Bifunctional PtCu Nanooctahedrons for the Electrochemical Conversion of Nitrite and Sulfion Into Value-Added Products

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Qing-Ling Hong, Wei Zhong, Kai-Yue He, Bin Sun, Xuan Ai, Xue Xiao, Yu Chen, Bao Yu Xia
{"title":"Bifunctional PtCu Nanooctahedrons for the Electrochemical Conversion of Nitrite and Sulfion Into Value-Added Products","authors":"Qing-Ling Hong,&nbsp;Wei Zhong,&nbsp;Kai-Yue He,&nbsp;Bin Sun,&nbsp;Xuan Ai,&nbsp;Xue Xiao,&nbsp;Yu Chen,&nbsp;Bao Yu Xia","doi":"10.1002/adsu.202400542","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical reduction of nitrite (NO<sub>2</sub><sup>−</sup>) contaminants to ammonia (NH<sub>3</sub>) is a sustainable and energy-saving strategy for NH<sub>3</sub> synthesis. However, this multi-electron reduction process requires an efficient electrocatalyst to overcome the kinetic barrier. Herein, the Pt<sub>2</sub>Cu<sub>1</sub> nanooctahedrons are synthesized through a liquid-phase chemical reduction process. The synergistic effect of bimetallic Pt and Cu sites in the Pt<sub>2</sub>Cu<sub>1</sub> nanooctahedrons is indispensable for accelerated NO<sub>2</sub><sup>−</sup> hydrogenation, originating from the strong hydrogen-atoms adsorption capacity at Pt site and the strong NO<sub>2</sub><sup>−</sup> adsorption capacity at Cu site. Specifically, the introduction of Pt sites can accelerate the accumulation of hydrogenated species on the catalyst surface, which promotes the formation of NH<sub>3</sub>. In 0.5 <span>m</span> Na<sub>2</sub>SO<sub>4</sub> solution, the Pt<sub>2</sub>Cu<sub>1</sub> nanooctahedrons can reduce NO<sub>2</sub><sup>−</sup> to NH<sub>3</sub> at a yield of 4.22 mg h<sup>−1</sup>mg<sub>cat</sub><sup>−1</sup> and a Faraday efficiency of 95.5% at a potential of −0.14 V versus RHE. Meanwhile, the Pt<sub>2</sub>Cu<sub>1</sub> nanooctahedrons also exhibit excellent activity for the sulfion oxidation reaction (SEOR). Using Pt<sub>2</sub>Cu<sub>1</sub> nanooctahedrons as bifunctional electrocatalyst, a coupled electrolysis system combining the nitrite electrochemical reduction reaction (NO<sub>2</sub><sup>−</sup>ERR) with the SEOR requires only 0.3 V total voltage, enabling energy-saving electrochemical NH<sub>3</sub> production and collective value-added recovery of nitrite and sulfion waste.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400542","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of nitrite (NO2) contaminants to ammonia (NH3) is a sustainable and energy-saving strategy for NH3 synthesis. However, this multi-electron reduction process requires an efficient electrocatalyst to overcome the kinetic barrier. Herein, the Pt2Cu1 nanooctahedrons are synthesized through a liquid-phase chemical reduction process. The synergistic effect of bimetallic Pt and Cu sites in the Pt2Cu1 nanooctahedrons is indispensable for accelerated NO2 hydrogenation, originating from the strong hydrogen-atoms adsorption capacity at Pt site and the strong NO2 adsorption capacity at Cu site. Specifically, the introduction of Pt sites can accelerate the accumulation of hydrogenated species on the catalyst surface, which promotes the formation of NH3. In 0.5 m Na2SO4 solution, the Pt2Cu1 nanooctahedrons can reduce NO2 to NH3 at a yield of 4.22 mg h−1mgcat−1 and a Faraday efficiency of 95.5% at a potential of −0.14 V versus RHE. Meanwhile, the Pt2Cu1 nanooctahedrons also exhibit excellent activity for the sulfion oxidation reaction (SEOR). Using Pt2Cu1 nanooctahedrons as bifunctional electrocatalyst, a coupled electrolysis system combining the nitrite electrochemical reduction reaction (NO2ERR) with the SEOR requires only 0.3 V total voltage, enabling energy-saving electrochemical NH3 production and collective value-added recovery of nitrite and sulfion waste.

Abstract Image

Abstract Image

将亚硝酸盐和硫磺电化学转化为增值产品的双功能铂铜纳米八面体
将亚硝酸盐(NO2-)污染物电化学还原成氨气(NH3)是一种可持续和节能的 NH3 合成策略。然而,这种多电子还原过程需要高效的电催化剂来克服动力学障碍。本文通过液相化学还原过程合成了 Pt2Cu1 纳米八面体。Pt2Cu1 纳米八面体中双金属铂和铜位点的协同效应是加速 NO2- 加氢不可或缺的因素,这源于铂位点的强氢原子吸附能力和铜位点的强 NO2- 吸附能力。具体来说,铂位点的引入可加速氢化物种在催化剂表面的积累,从而促进 NH3 的形成。在 0.5 m Na2SO4 溶液中,Pt2Cu1 纳米八面体可将 NO2- 还原成 NH3,当电位为 -0.14 V 相对于 RHE 时,产率为 4.22 mg h-1mgcat-1,法拉第效率为 95.5%。与此同时,Pt2Cu1 纳米八面体在亚硫酰氧化反应(SEOR)中也表现出卓越的活性。使用 Pt2Cu1 纳米八面体作为双功能电催化剂,结合亚硝酸盐电化学还原反应(NO2-ERR)和硫磷氧化反应的耦合电解系统只需 0.3 V 的总电压,从而实现了节能的电化学 NH3 生产和亚硝酸盐及硫磷废料的集体增值回收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信