Linzi Luo, Bin Peng, Lei Xiong, Baohe Wang, Linghao Wang
{"title":"Ginsenoside Re promotes proliferation of murine bone marrow mesenchymal stem cells in vitro through estrogen-like action","authors":"Linzi Luo, Bin Peng, Lei Xiong, Baohe Wang, Linghao Wang","doi":"10.1007/s11626-024-00969-1","DOIUrl":null,"url":null,"abstract":"<p>Ginsenoside Re (GS-Re) is a major saponin monomer found in <i>Panax ginseng</i> Meyer. It has been shown to exhibit a wide range of biological and pharmacological activities. This study aimed to investigate the effect of GS-Re on the proliferation of murine bone marrow–derived MSCs in vitro and to assess whether its effect is dependent on the estrogen receptor–mediated signal transduction. CFU colony formation assay, cell counting, and colorimetric MTT test were employed to examine effects of GS-Re on the in vitro proliferation of MSCs and the mechanisms of the underlying effect were detected by flow cytometric analysis, immunofluorescence staining for BrdU, and Western blotting. GS-Re dose-dependently promoted the in vitro proliferation of murine bone marrow–derived MSCs over a range of concentrations of 0.5 ~ 20 µmol/L, and this effect approached the maximal level at 10 µmol/L. Increases in the expression level of phosphorylated extracellular signal–regulated kinases 1/2 (p-ERK1/2) were observed in the passaged MSCs treated with 10 µmol/L of GS-Re. These effects of GS-Re on the MSCs were significantly counteracted by the addition of ICI 182, 780 (an estrogen receptor antagonist) to the culture media. We concluded that GS-Re is able to exert a proliferation-promoting effect on murine bone marrow–derived mesenchymal stem cells in vitro, and its action is involved in the estrogen receptor–mediated signaling.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":"9 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00969-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ginsenoside Re (GS-Re) is a major saponin monomer found in Panax ginseng Meyer. It has been shown to exhibit a wide range of biological and pharmacological activities. This study aimed to investigate the effect of GS-Re on the proliferation of murine bone marrow–derived MSCs in vitro and to assess whether its effect is dependent on the estrogen receptor–mediated signal transduction. CFU colony formation assay, cell counting, and colorimetric MTT test were employed to examine effects of GS-Re on the in vitro proliferation of MSCs and the mechanisms of the underlying effect were detected by flow cytometric analysis, immunofluorescence staining for BrdU, and Western blotting. GS-Re dose-dependently promoted the in vitro proliferation of murine bone marrow–derived MSCs over a range of concentrations of 0.5 ~ 20 µmol/L, and this effect approached the maximal level at 10 µmol/L. Increases in the expression level of phosphorylated extracellular signal–regulated kinases 1/2 (p-ERK1/2) were observed in the passaged MSCs treated with 10 µmol/L of GS-Re. These effects of GS-Re on the MSCs were significantly counteracted by the addition of ICI 182, 780 (an estrogen receptor antagonist) to the culture media. We concluded that GS-Re is able to exert a proliferation-promoting effect on murine bone marrow–derived mesenchymal stem cells in vitro, and its action is involved in the estrogen receptor–mediated signaling.
期刊介绍:
In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include:
Biotechnology;
Cell and Tissue Models;
Cell Growth/Differentiation/Apoptosis;
Cellular Pathology/Virology;
Cytokines/Growth Factors/Adhesion Factors;
Establishment of Cell Lines;
Signal Transduction;
Stem Cells;
Toxicology/Chemical Carcinogenesis;
Product Applications.