Slowing the reactivity of dicyclometalated Pd(II) complexes through the 2,6-bis(N-heterocyclic carbene)pyridine (C^N^C) non-leaving ligands: kinetic and computational study
Daniel O. Onunga, Deogratius Jaganyi, Allen Mambanda
{"title":"Slowing the reactivity of dicyclometalated Pd(II) complexes through the 2,6-bis(N-heterocyclic carbene)pyridine (C^N^C) non-leaving ligands: kinetic and computational study","authors":"Daniel O. Onunga, Deogratius Jaganyi, Allen Mambanda","doi":"10.1007/s11243-024-00601-x","DOIUrl":null,"url":null,"abstract":"<p>In this study, the kinetic and mechanistic studies of the substitution of chloride ligand of [(chloro)(2,6-bis(N-heterocyclic carbene)pyridine)Pd(II)]BF<sub>4</sub> complexes, namely Pd1, Pd2, Pd3 and Pd4, by thiourea nucleophiles viz Tu, Dmtu and Tmtu were investigated. The rate of chloride substitution of dicyclometalated complexes was monitored in aqueous media containing 20 mM LiCl using stopped-flow spectrophotometry as a function of concentration and temperature under <i>pseudo</i>-first-order conditions. The kinetic data fitted to the <i>pseudo</i>-first-order rate law, <i>k</i><sub>obs</sub> = <i>k</i><sub>2</sub>[Nu]. The rate of chloride substitution decreased in the order Pd1 ˃ Pd2 ˃ Pd4 ˃ > Pd3. The reactivity of Pd1 was lower by two orders of magnitude compared to [Pd(terpy)Cl]<sup>+</sup> (terpy = terpyridine). Both complexes have strong π-acceptor non-leaving ligands that promote efficient back bonding of charge into the aromatic bis(NHC) chelates of its non-leaving ligand. Contrastingly, the lutidine-bridged complexes, (Pd2-4) form 6-membered and non-aromatic bis(NHC) chelates which cause steric influence on either side of the square plane. Their substituents also impart additional steric effects and σ-inductive effects in the rings. The combined effect significantly lowers rates of substitution. Consequently, Pd3 was the least reactive. The substitution mechanism is associative since no evidence of a mechanistic change over to the dissociative substitution was observed, despite the complexes coordinated with tridentates with two <i>cis-</i>σ-bound carbon donors.</p>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"27 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11243-024-00601-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the kinetic and mechanistic studies of the substitution of chloride ligand of [(chloro)(2,6-bis(N-heterocyclic carbene)pyridine)Pd(II)]BF4 complexes, namely Pd1, Pd2, Pd3 and Pd4, by thiourea nucleophiles viz Tu, Dmtu and Tmtu were investigated. The rate of chloride substitution of dicyclometalated complexes was monitored in aqueous media containing 20 mM LiCl using stopped-flow spectrophotometry as a function of concentration and temperature under pseudo-first-order conditions. The kinetic data fitted to the pseudo-first-order rate law, kobs = k2[Nu]. The rate of chloride substitution decreased in the order Pd1 ˃ Pd2 ˃ Pd4 ˃ > Pd3. The reactivity of Pd1 was lower by two orders of magnitude compared to [Pd(terpy)Cl]+ (terpy = terpyridine). Both complexes have strong π-acceptor non-leaving ligands that promote efficient back bonding of charge into the aromatic bis(NHC) chelates of its non-leaving ligand. Contrastingly, the lutidine-bridged complexes, (Pd2-4) form 6-membered and non-aromatic bis(NHC) chelates which cause steric influence on either side of the square plane. Their substituents also impart additional steric effects and σ-inductive effects in the rings. The combined effect significantly lowers rates of substitution. Consequently, Pd3 was the least reactive. The substitution mechanism is associative since no evidence of a mechanistic change over to the dissociative substitution was observed, despite the complexes coordinated with tridentates with two cis-σ-bound carbon donors.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.