Lin Cheng, Sheng-Chen Liu, Liang-You Peng, Qihuang Gong
{"title":"Crosstalk suppression of parallel gates for fault-tolerant quantum computation with trapped ions via optical tweezers","authors":"Lin Cheng, Sheng-Chen Liu, Liang-You Peng, Qihuang Gong","doi":"10.1103/physrevapplied.22.034021","DOIUrl":null,"url":null,"abstract":"The ability to perform entangling operations in parallel with a low error is essential for a large-scale fault-tolerant quantum computer. However, for trapped-ion systems, it is a challenging task due to the crosstalk resulting from the collective motional modes. Here, we develop a highly paralleled quantum circuit demonstrating a logical qubit based on the Steane code and study the impact of the crosstalk error on the performance of the fault-tolerant protocol. We show that the crosstalk indeed greatly destroys the fault-tolerant property of the quantum error correction. To achieve the break-even point with encoded qubits, we identify the suppression requirement of the crosstalk error to be less than <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></math> for the Steane code. Furthermore, to mitigate the crosstalk below the fault-tolerant threshold, we propose a highly efficient optimization scheme by utilizing the programmable optical tweezer array. Overall, we make an elegant combination of the pulse-control optimization of parallel gate operations with the fault-tolerant protocol on the error-protected universal quantum computer.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"62 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034021","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to perform entangling operations in parallel with a low error is essential for a large-scale fault-tolerant quantum computer. However, for trapped-ion systems, it is a challenging task due to the crosstalk resulting from the collective motional modes. Here, we develop a highly paralleled quantum circuit demonstrating a logical qubit based on the Steane code and study the impact of the crosstalk error on the performance of the fault-tolerant protocol. We show that the crosstalk indeed greatly destroys the fault-tolerant property of the quantum error correction. To achieve the break-even point with encoded qubits, we identify the suppression requirement of the crosstalk error to be less than for the Steane code. Furthermore, to mitigate the crosstalk below the fault-tolerant threshold, we propose a highly efficient optimization scheme by utilizing the programmable optical tweezer array. Overall, we make an elegant combination of the pulse-control optimization of parallel gate operations with the fault-tolerant protocol on the error-protected universal quantum computer.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.