Realization of dynamically controlled resonator pairs in nanomechanical arrays

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yichuan Zhang, Tian Tian, Shaochun Lin, Jingwei Zhou, Longhao Wu, Zhouning Liu, Chang-Kui Duan, Liang Zhang, Jiangfeng Du
{"title":"Realization of dynamically controlled resonator pairs in nanomechanical arrays","authors":"Yichuan Zhang, Tian Tian, Shaochun Lin, Jingwei Zhou, Longhao Wu, Zhouning Liu, Chang-Kui Duan, Liang Zhang, Jiangfeng Du","doi":"10.1103/physrevapplied.22.024060","DOIUrl":null,"url":null,"abstract":"Nanomechanical resonator arrays constitute a promising platform for topological physics and integrated acoustic devices. However, achieving precise control of the couplings between resonators has been a significant challenge for realizing a time-dependent Hamiltonian. In this work, we address this challenge by designing the geometric parameters of the resonators, enabling us to achieve dynamical control over the coupling strength and frequency stability. Our scalable resonator array allows for the dynamic control of coupling strengths between every individual resonator pair, ranging from zero to more than 20 times the dissipation rate. Moreover, we demonstrate Rabi-like oscillations with real-time-varying Rabi frequencies. This dynamically controlled system provides an extended platform for investigating dynamic processes and their applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"48 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024060","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomechanical resonator arrays constitute a promising platform for topological physics and integrated acoustic devices. However, achieving precise control of the couplings between resonators has been a significant challenge for realizing a time-dependent Hamiltonian. In this work, we address this challenge by designing the geometric parameters of the resonators, enabling us to achieve dynamical control over the coupling strength and frequency stability. Our scalable resonator array allows for the dynamic control of coupling strengths between every individual resonator pair, ranging from zero to more than 20 times the dissipation rate. Moreover, we demonstrate Rabi-like oscillations with real-time-varying Rabi frequencies. This dynamically controlled system provides an extended platform for investigating dynamic processes and their applications.

Abstract Image

在纳米机械阵列中实现动态控制谐振器对
纳米机械谐振器阵列是拓扑物理和集成声学设备的一个前景广阔的平台。然而,实现谐振器之间耦合的精确控制一直是实现随时间变化的哈密顿的重大挑战。在这项工作中,我们通过设计谐振器的几何参数来应对这一挑战,从而实现对耦合强度和频率稳定性的动态控制。我们的可扩展谐振器阵列可以动态控制每一对谐振器之间的耦合强度,范围从零到耗散率的 20 多倍。此外,我们还展示了实时变化 Rabi 频率的 Rabi 类振荡。这个动态控制系统为研究动态过程及其应用提供了一个扩展平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信