Zinc‐Triazolate Metal‐Organic Framework Assisted Synthesis of Germanium Nanoparticles Encapsulated in Nitrogen‐Doped Carbon as Anode Materials for Lithium‐Ion Batteries
{"title":"Zinc‐Triazolate Metal‐Organic Framework Assisted Synthesis of Germanium Nanoparticles Encapsulated in Nitrogen‐Doped Carbon as Anode Materials for Lithium‐Ion Batteries","authors":"Zhuo Wang, Xue Bai, Jiabao Dong, Kexin Zhang, Bin Zhao, Xiaoli Dong","doi":"10.1002/batt.202400442","DOIUrl":null,"url":null,"abstract":"Germanium (Ge) is demonstrated to be prospective as a lithium‐ion battery anode material, yet the cycling stability is undermined by substantial volume fluctuations, restricting its viability for practical applications. Here, we present a facile Zn‐based metal−organic framework (MOF) engaged route to produce Ge nanoparticles in situ encapsulated in nitrogen‐doped mesoporous carbon (denoted as Ge@N‐C) as an anode material. This method uses a zinc‐triazolate MOF (MET‐6) and commercial GeO2 as the hybrid carbon and Ge precursors. After a heating treatment, the Ge@N‐C composite is readily obtained along with the simultaneous thermal decomposition of MET‐6 and the reduction of GeO2. Benefiting from the mesoporous structure and high electrical conductivity of N‐C, along with the strong interaction between Ge and N‐C, the obtained Ge@N‐C electrode exhibits a significant reversible charge capacity of 1012.8 mAh g‐1 after 150 cycles at 0.1 A g‐1, and excellent rate capability. Furthermore, a reversible charge capacity of 521.1 mAh g‐1 can be maintained at 5.0 A g‐1 after 1000 cycles.","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"309 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/batt.202400442","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Germanium (Ge) is demonstrated to be prospective as a lithium‐ion battery anode material, yet the cycling stability is undermined by substantial volume fluctuations, restricting its viability for practical applications. Here, we present a facile Zn‐based metal−organic framework (MOF) engaged route to produce Ge nanoparticles in situ encapsulated in nitrogen‐doped mesoporous carbon (denoted as Ge@N‐C) as an anode material. This method uses a zinc‐triazolate MOF (MET‐6) and commercial GeO2 as the hybrid carbon and Ge precursors. After a heating treatment, the Ge@N‐C composite is readily obtained along with the simultaneous thermal decomposition of MET‐6 and the reduction of GeO2. Benefiting from the mesoporous structure and high electrical conductivity of N‐C, along with the strong interaction between Ge and N‐C, the obtained Ge@N‐C electrode exhibits a significant reversible charge capacity of 1012.8 mAh g‐1 after 150 cycles at 0.1 A g‐1, and excellent rate capability. Furthermore, a reversible charge capacity of 521.1 mAh g‐1 can be maintained at 5.0 A g‐1 after 1000 cycles.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.