{"title":"Development of MXene-based flexible piezoresistive sensors","authors":"Tong Xu, Heyan Peng","doi":"10.1515/polyeng-2024-0110","DOIUrl":null,"url":null,"abstract":"The flexibility and sensitivity of traditional sensors is hard to achieve unless wearable technology develops. Flexible piezoresistive sensor (FPS) is one of the solutions in the nondestructive health monitoring of living body. In the application of sensing devices for physiological or biochemical signals, fast feedback speed and accurate signal feedback are essential requirements for obtaining sensitive response signals. Additionally, the development of FPS has promoted the research of conductive materials that could be used in wearable devices. However, improving the performance of functional materials is an important way of effort for researchers. Recently, MXene as a new kind of 2D materials and their composites have made a tremendous impact in the field of sensors for wearable health sensors. Numerous conductive materials based 2D MXene could expedite their practical application in FPS by overcoming the present limitations of FPS such as poor responsivity, signal accuracy, and the narrower corresponding range. There has been plenty of breakthrough in the MXene-based FPS in the past several years. The main purpose of this paper is reviewing the recent development of MXene-based FPS and providing an outlook on the future development of it.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0110","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The flexibility and sensitivity of traditional sensors is hard to achieve unless wearable technology develops. Flexible piezoresistive sensor (FPS) is one of the solutions in the nondestructive health monitoring of living body. In the application of sensing devices for physiological or biochemical signals, fast feedback speed and accurate signal feedback are essential requirements for obtaining sensitive response signals. Additionally, the development of FPS has promoted the research of conductive materials that could be used in wearable devices. However, improving the performance of functional materials is an important way of effort for researchers. Recently, MXene as a new kind of 2D materials and their composites have made a tremendous impact in the field of sensors for wearable health sensors. Numerous conductive materials based 2D MXene could expedite their practical application in FPS by overcoming the present limitations of FPS such as poor responsivity, signal accuracy, and the narrower corresponding range. There has been plenty of breakthrough in the MXene-based FPS in the past several years. The main purpose of this paper is reviewing the recent development of MXene-based FPS and providing an outlook on the future development of it.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.