Jie Ma, Zhiji Han, Mingge Li, Zhijie Liu, Wei He, Shuzhi Sam Ge
{"title":"Conductive hydrogels‐based self‐sensing soft robot state perception and trajectory tracking","authors":"Jie Ma, Zhiji Han, Mingge Li, Zhijie Liu, Wei He, Shuzhi Sam Ge","doi":"10.1002/rob.22420","DOIUrl":null,"url":null,"abstract":"Soft robots face significant challenges in proprioceptive sensing and precise control due to their highly deformable and compliant nature. This paper addresses these challenges by developing a conductive hydrogel sensor and integrating it into a soft robot for bending angle measurement and motion control. A quantitative mapping between the hydrogel resistance and the robot's bending gesture is formulated. Furthermore, a nonlinear differentiator is proposed to estimate the angular velocity for closed‐loop control, eliminating the reliance on conventional sensors. Meanwhile, a controller is designed to track both structural and nonstructural trajectories. The proposed approach integrates advanced soft sensing materials and intelligent control algorithms, significantly improving the proprioception and motion accuracy of soft robots. This work bridges the gap between novel material design and practical control applications, opening up new possibilities for soft robots to perform delicate tasks in various fields. The experimental results demonstrate the effectiveness of the proposed sensing and control approach in achieving precise and robust motion control of the soft robot.","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"73 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rob.22420","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Soft robots face significant challenges in proprioceptive sensing and precise control due to their highly deformable and compliant nature. This paper addresses these challenges by developing a conductive hydrogel sensor and integrating it into a soft robot for bending angle measurement and motion control. A quantitative mapping between the hydrogel resistance and the robot's bending gesture is formulated. Furthermore, a nonlinear differentiator is proposed to estimate the angular velocity for closed‐loop control, eliminating the reliance on conventional sensors. Meanwhile, a controller is designed to track both structural and nonstructural trajectories. The proposed approach integrates advanced soft sensing materials and intelligent control algorithms, significantly improving the proprioception and motion accuracy of soft robots. This work bridges the gap between novel material design and practical control applications, opening up new possibilities for soft robots to perform delicate tasks in various fields. The experimental results demonstrate the effectiveness of the proposed sensing and control approach in achieving precise and robust motion control of the soft robot.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.