Haihong Ai, Pingfa Ren, Kun Wang, Tianqi Song, Zhanshan Wang
{"title":"Model modification and influence of edge effect on effective area of giant electro-rheological polishing using plate electrodes","authors":"Haihong Ai, Pingfa Ren, Kun Wang, Tianqi Song, Zhanshan Wang","doi":"10.1088/1361-665x/ad74c0","DOIUrl":null,"url":null,"abstract":"Giant electro-rheological polishing (GERP) is recognized as an innovative ultra-precision machining technology with significant potential. However, the pronounced edge effect within the GERP’s polishing gap can introduce errors in calculating the effective area and designing the electrode structure. This, in turn, may lead to under-polishing and an increased risk of insulation breakdown. In this study, COMSOL was employed to investigate the electric field distribution characteristics within the polishing gap. This exploration aimed to refine the calculation model of the effective area, optimize the plate electrodes’ structure and size, and diminish the likelihood of insulation breakdown. Through systematic finite element simulations, the impact of polishing voltage, inter-electrode gap, and plate length on the edge effect was thoroughly analyzed to ascertain its influence range. The simulation findings revealed that, while maintaining a constant inter-electrode gap for the tool electrode, variations in the polishing gap, polishing voltage, and plate length within specific ranges resulted in an edge effect influence range of approximately 1 mm. Moreover, when the machining gap, polishing voltage, and plate length remained unchanged, the edge effect influence range increased proportionally with the electrode gap within a specific range, approximately equivalent to the size of the electrode gap. Experimental validation of the giant electro-rheological effect confirmed the existence and influence range of the edge effect, aligning with the finite element simulation results. Ultimately, modifications to the calculation model of the effective area were proposed, along with a solution to optimize the electrode size and structure, with the objective of reducing the probability of insulation breakdown. In practical applications, this work can provide a valuable reference for electrode structure design, insulation breakdown improvement and parameter selection.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"100 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad74c0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Giant electro-rheological polishing (GERP) is recognized as an innovative ultra-precision machining technology with significant potential. However, the pronounced edge effect within the GERP’s polishing gap can introduce errors in calculating the effective area and designing the electrode structure. This, in turn, may lead to under-polishing and an increased risk of insulation breakdown. In this study, COMSOL was employed to investigate the electric field distribution characteristics within the polishing gap. This exploration aimed to refine the calculation model of the effective area, optimize the plate electrodes’ structure and size, and diminish the likelihood of insulation breakdown. Through systematic finite element simulations, the impact of polishing voltage, inter-electrode gap, and plate length on the edge effect was thoroughly analyzed to ascertain its influence range. The simulation findings revealed that, while maintaining a constant inter-electrode gap for the tool electrode, variations in the polishing gap, polishing voltage, and plate length within specific ranges resulted in an edge effect influence range of approximately 1 mm. Moreover, when the machining gap, polishing voltage, and plate length remained unchanged, the edge effect influence range increased proportionally with the electrode gap within a specific range, approximately equivalent to the size of the electrode gap. Experimental validation of the giant electro-rheological effect confirmed the existence and influence range of the edge effect, aligning with the finite element simulation results. Ultimately, modifications to the calculation model of the effective area were proposed, along with a solution to optimize the electrode size and structure, with the objective of reducing the probability of insulation breakdown. In practical applications, this work can provide a valuable reference for electrode structure design, insulation breakdown improvement and parameter selection.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.