{"title":"Advances and prospects of sulfur quantum dots in food sensing applications","authors":"Ajahar Khan, Parya Ezati, Ruchir Priyadarshi, Wanli Zhang, Swarup Roy, Zohreh Riahi, Jong-Whan Rhim","doi":"10.1016/j.susmat.2024.e01105","DOIUrl":null,"url":null,"abstract":"The growing demand for sustainable, cost-effective and sensitive technologies for food safety assessment has led to the investigation of advanced analytical techniques that minimize environmental impact. In this regard, implementing a sensing probe utilizing sulfur quantum dots (SQDs) manufactured using sulfur will not only minimize the environmental impact of waste disposal but also promote efficient use of resources. Currently, SQDs are emerging as excellent functional materials in various research fields due to their non-toxicity, antibacterial properties, biocompatibility, and excellent photoluminescence properties. This review presents the development and prospects of SQD-based detection systems in food and their prospects for tracking contaminants or quality changes in packaged foods. Despite the current rare applications in the food industry, SQDs can be considered potential candidates to develop new intelligent nanosensors for food quality control. This review provides an overview of the impact and feasibility of using SQD to detect and analyze food hazards and discusses future applications. In particular, this review discusses the challenges of existing analytical methods and highlights the advantages and disadvantages of SQD for food safety. The use of SQD can overcome the limitations of traditional food analysis methods and become an advanced method to analyze and detect food safety.","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"184 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.susmat.2024.e01105","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for sustainable, cost-effective and sensitive technologies for food safety assessment has led to the investigation of advanced analytical techniques that minimize environmental impact. In this regard, implementing a sensing probe utilizing sulfur quantum dots (SQDs) manufactured using sulfur will not only minimize the environmental impact of waste disposal but also promote efficient use of resources. Currently, SQDs are emerging as excellent functional materials in various research fields due to their non-toxicity, antibacterial properties, biocompatibility, and excellent photoluminescence properties. This review presents the development and prospects of SQD-based detection systems in food and their prospects for tracking contaminants or quality changes in packaged foods. Despite the current rare applications in the food industry, SQDs can be considered potential candidates to develop new intelligent nanosensors for food quality control. This review provides an overview of the impact and feasibility of using SQD to detect and analyze food hazards and discusses future applications. In particular, this review discusses the challenges of existing analytical methods and highlights the advantages and disadvantages of SQD for food safety. The use of SQD can overcome the limitations of traditional food analysis methods and become an advanced method to analyze and detect food safety.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.