Dazylah Darji, Manroshan Singh, Jaswan Singh, Mohamad Akmal Abdul Rahim, Muhammad Syaarani Danya, Fatimah Rubaizah Mohd Rasdi
{"title":"Optimisation of specialty rubber latex application in dipped latex product","authors":"Dazylah Darji, Manroshan Singh, Jaswan Singh, Mohamad Akmal Abdul Rahim, Muhammad Syaarani Danya, Fatimah Rubaizah Mohd Rasdi","doi":"10.1007/s42464-024-00279-x","DOIUrl":null,"url":null,"abstract":"<div><p>The preparation of epoxidised natural rubber (ENR) latex-dipped film was successfully carried out. The effects of several parameters, such as sulphur loading, vulcanisation temperature and time, leaching temperature and time, thickness, oil, and chemical resistance, were studied. ENR latex films were successfully prepared by varying the sulphur loading from 0.5 phr to 2.0 phr. Superior tensile properties were observed for the vulcanised temperature at 75 °C with vulcanisation at 30 min. A longer leaching time and higher leaching temperature demonstrated an optimal tensile strength for ENR latex to leach out all undesirable chemicals. The thickness of ENR-dipped film can be varied by selecting an appropriate concentration of latex TSC and coagulant, different dwelling times, and former temperatures. The determination of oil resistances showed that the oil uptake of ENRs in oils was substantially less than that of natural rubber (NR) and was comparable to commercial gloves. Aside from that, ENR demonstrated remarkable chemical resistance to acid and alkaline solutions.</p></div>","PeriodicalId":662,"journal":{"name":"Journal of Rubber Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rubber Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s42464-024-00279-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of epoxidised natural rubber (ENR) latex-dipped film was successfully carried out. The effects of several parameters, such as sulphur loading, vulcanisation temperature and time, leaching temperature and time, thickness, oil, and chemical resistance, were studied. ENR latex films were successfully prepared by varying the sulphur loading from 0.5 phr to 2.0 phr. Superior tensile properties were observed for the vulcanised temperature at 75 °C with vulcanisation at 30 min. A longer leaching time and higher leaching temperature demonstrated an optimal tensile strength for ENR latex to leach out all undesirable chemicals. The thickness of ENR-dipped film can be varied by selecting an appropriate concentration of latex TSC and coagulant, different dwelling times, and former temperatures. The determination of oil resistances showed that the oil uptake of ENRs in oils was substantially less than that of natural rubber (NR) and was comparable to commercial gloves. Aside from that, ENR demonstrated remarkable chemical resistance to acid and alkaline solutions.
期刊介绍:
The Journal of Rubber Research is devoted to both natural and synthetic rubbers, as well as to related disciplines. The scope of the journal encompasses all aspects of rubber from the core disciplines of biology, physics and chemistry, as well as economics. As a specialised field, rubber science includes within its niche a vast potential of innovative and value-added research areas yet to be explored. This peer reviewed publication focuses on the results of active experimental research and authoritative reviews on all aspects of rubber science.
The Journal of Rubber Research welcomes research on:
the upstream, including crop management, crop improvement and protection, and biotechnology;
the midstream, including processing and effluent management;
the downstream, including rubber engineering and product design, advanced rubber technology, latex science and technology, and chemistry and materials exploratory;
economics, including the economics of rubber production, consumption, and market analysis.
The Journal of Rubber Research serves to build a collective knowledge base while communicating information and validating the quality of research within the discipline, and bringing together work from experts in rubber science and related disciplines.
Scientists in both academia and industry involved in researching and working with all aspects of rubber will find this journal to be both source of information and a gateway for their own publications.