Yajing Wang, Chao Wang, Xinxin Wang, Shengqiang Cui, Min Hao, Chunhui Wang, Xudong Huang and Gui Yang
{"title":"Enhanced thermoelectric performance of AgCuTe-doped polycrystalline SnSe by lattice plainification","authors":"Yajing Wang, Chao Wang, Xinxin Wang, Shengqiang Cui, Min Hao, Chunhui Wang, Xudong Huang and Gui Yang","doi":"10.1088/1361-6463/ad76be","DOIUrl":null,"url":null,"abstract":"Polycrystalline SnSe, renowned for its environmental sustainability, holds promise as a significant thermoelectric material, attracting considerable research attention. This study focuses on the thermoelectric properties of p-type polycrystalline SnSe doped with silver copper telluride (AgCuTe). Our experimental results conclusively show that the decomposition products of AgCuTe not only fill Sn vacancies but also act as acceptors, thereby introducing additional hole carriers. This leads to a notable improvement in both carrier mobility and concentration. Importantly, the thermal conductivity of the doped samples remains largely unchanged, as the lattice flattening strategy significantly boosts electrical performance without affecting lattice thermal conductivity. Ultimately, the doped sample Sn0.97Se-0.5%AgCuTe resulted in a power factor of 6.2 mW mK−1 and a peak ZT value of 1.4 at 798 K, representing a 109% improvement in ZT value. All samples exhibits superior stability and reproducibility, emphasizing its reliability for practical applications.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad76be","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polycrystalline SnSe, renowned for its environmental sustainability, holds promise as a significant thermoelectric material, attracting considerable research attention. This study focuses on the thermoelectric properties of p-type polycrystalline SnSe doped with silver copper telluride (AgCuTe). Our experimental results conclusively show that the decomposition products of AgCuTe not only fill Sn vacancies but also act as acceptors, thereby introducing additional hole carriers. This leads to a notable improvement in both carrier mobility and concentration. Importantly, the thermal conductivity of the doped samples remains largely unchanged, as the lattice flattening strategy significantly boosts electrical performance without affecting lattice thermal conductivity. Ultimately, the doped sample Sn0.97Se-0.5%AgCuTe resulted in a power factor of 6.2 mW mK−1 and a peak ZT value of 1.4 at 798 K, representing a 109% improvement in ZT value. All samples exhibits superior stability and reproducibility, emphasizing its reliability for practical applications.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.