Shangxiao Li, Shufang Yuan, Yi Shi, Bin Ni, Wenxia Guo, Chaopeng Yang, Mingzhi Wang, Weiya Hao
{"title":"Effects of victim’s body posture and attacker’s gender on slashing attacks: a biomechanical study","authors":"Shangxiao Li, Shufang Yuan, Yi Shi, Bin Ni, Wenxia Guo, Chaopeng Yang, Mingzhi Wang, Weiya Hao","doi":"10.3389/fbioe.2024.1450953","DOIUrl":null,"url":null,"abstract":"ObjectiveSharp force injury has been and will remain to be a major cause of violent death; however, scientific evaluations on the impact of body posture of the victim and gender of the perpetrator on sharp force injury have been scarce. The purpose of this study was to evaluate the biomechanical characteristics found in individuals (male and female) when using a Chinese kitchen knife to slash the neck of a dummy while it was in the standing and supine positions. This work offers a solid basis for forensic identifications, criminal investigations, and court trials.MethodsA total of 12 male and 12 female college students participated in this study. Kinematic, kinetic, and surface electromyography (sEMG) data were evaluated when slashing the neck of a dummy while it was in the standing and supine positions using a Chinese kitchen knife.ResultsWhen slashing the neck of a standing dummy, participants showed shorter contact time (19.5%) and slower shoulder velocities (30.9%) as well as higher hip velocity (26.0%) and increased root mean square (RMS) and integral electromyography (iEMG) for the anterior deltoid (51.3% and 51.2%, respectively) compared to those while the dummy was in the supine position (all <jats:italic>p</jats:italic> &lt; 0.05), regardless of gender. When slashing a dummy’s neck while it was in standing and supine positions, male participants showed higher shoulder, elbow, and wrist velocities (22.6%, 22.7%, and 24.4%, respectively) and higher slashing velocity (19.8%), slashing force (24.2%), and energy (46.2%) than female participants (all <jats:italic>p</jats:italic> &lt; 0.05). In addition, male participants showed shorter contact time (17.8%), and the values of RMS and iEMG of the anterior deltoid, biceps brachii, extensor carpi radialis longus, and flexor carpi ulnaris were less than those of female participants (98.9%, 47.3%, 65.6%, and 33.4% for RMS and 115.1%, 59.4%, 80.1%, and 47.8% for iEMG, respectively).ConclusionThere was no difference in slashing speed, slashing force, and energy when using a Chinese kitchen knife to slash the dummy’s neck while it was in different body postures (standing and supine), suggesting a similar level of injury severity. However, there were significant differences in slashing action patterns between the two body postures, with longer contact time, smaller hip velocity, greater shoulder velocity, and less muscle activation level of the deltoid exertion when slashing the dummy’s neck in the supine position. Gender may have a greater effect on the severity of slashing, and the gender difference may be partly related to the body weight difference. The findings from this study may provide quantitative indicators and references for analyzing the motive behind the crime, as well as for case reconstruction, and for the court’s conviction and sentencing processes.","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1450953","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveSharp force injury has been and will remain to be a major cause of violent death; however, scientific evaluations on the impact of body posture of the victim and gender of the perpetrator on sharp force injury have been scarce. The purpose of this study was to evaluate the biomechanical characteristics found in individuals (male and female) when using a Chinese kitchen knife to slash the neck of a dummy while it was in the standing and supine positions. This work offers a solid basis for forensic identifications, criminal investigations, and court trials.MethodsA total of 12 male and 12 female college students participated in this study. Kinematic, kinetic, and surface electromyography (sEMG) data were evaluated when slashing the neck of a dummy while it was in the standing and supine positions using a Chinese kitchen knife.ResultsWhen slashing the neck of a standing dummy, participants showed shorter contact time (19.5%) and slower shoulder velocities (30.9%) as well as higher hip velocity (26.0%) and increased root mean square (RMS) and integral electromyography (iEMG) for the anterior deltoid (51.3% and 51.2%, respectively) compared to those while the dummy was in the supine position (all p < 0.05), regardless of gender. When slashing a dummy’s neck while it was in standing and supine positions, male participants showed higher shoulder, elbow, and wrist velocities (22.6%, 22.7%, and 24.4%, respectively) and higher slashing velocity (19.8%), slashing force (24.2%), and energy (46.2%) than female participants (all p < 0.05). In addition, male participants showed shorter contact time (17.8%), and the values of RMS and iEMG of the anterior deltoid, biceps brachii, extensor carpi radialis longus, and flexor carpi ulnaris were less than those of female participants (98.9%, 47.3%, 65.6%, and 33.4% for RMS and 115.1%, 59.4%, 80.1%, and 47.8% for iEMG, respectively).ConclusionThere was no difference in slashing speed, slashing force, and energy when using a Chinese kitchen knife to slash the dummy’s neck while it was in different body postures (standing and supine), suggesting a similar level of injury severity. However, there were significant differences in slashing action patterns between the two body postures, with longer contact time, smaller hip velocity, greater shoulder velocity, and less muscle activation level of the deltoid exertion when slashing the dummy’s neck in the supine position. Gender may have a greater effect on the severity of slashing, and the gender difference may be partly related to the body weight difference. The findings from this study may provide quantitative indicators and references for analyzing the motive behind the crime, as well as for case reconstruction, and for the court’s conviction and sentencing processes.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.