Photo- and exchange-field controlled spin and valley polarized transport in a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides
Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati
{"title":"Photo- and exchange-field controlled spin and valley polarized transport in a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides","authors":"Shahla Hosseinzadeh Helaleh, Mohammad Alipourzadeh, Yaser Hajati","doi":"10.1088/1361-6463/ad70c3","DOIUrl":null,"url":null,"abstract":"We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad70c3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We theoretically investigate spin- and valley-polarized transport within a normal/antiferromagnetic/normal (N/AF/N) junction based on transition metal dichalcogenides (TMDs), under the influence of off-resonance circularly polarized light and gate voltage. Antiferromagnetism modulates spin states and the effective gap, reducing the spin gap for one state while increasing it for the opposite, resulting in a broad spin polarization and a controlled gap. Off-resonance circularly polarized light adjusts the valley degree of freedom and the effective gap, providing a wide range of valley polarization. Harnessing the strong spin–orbit coupling in TMDs enables perfect spin-valley polarization in the proposed junction across a wide range of Fermi energies through AF and/or off-resonance light manipulation. AF manipulation effectively narrows the band gap of TMDs at lower light energies, enhancing potential applications of the proposed junction for spin-valley filtering.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.