Accelerated High-Temperature Oxidation Behavior of Ferritic Stainless Steel under Air/H2+H2O Dual Atmosphere

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY
Riko Inuzuka, Norikazu Osada, Kiyoshi Imai, Tsuneji Kameda, Tatsumi Ishihara
{"title":"Accelerated High-Temperature Oxidation Behavior of Ferritic Stainless Steel under Air/H2+H2O Dual Atmosphere","authors":"Riko Inuzuka, Norikazu Osada, Kiyoshi Imai, Tsuneji Kameda, Tatsumi Ishihara","doi":"10.1149/1945-7111/ad6bc4","DOIUrl":null,"url":null,"abstract":"Improvement in durability is one of the important subjects for utilizing solid oxide electrolyzer cell (SOEC) systems widely. In SOEC stacks, separators are exposed to complexed dual atmosphere (i.e. hydrogen - steam mixed gases and oxygen rich air are on each side). In this study, the degradation phenomena of separator materials (SUS430, ZMG232G10, Crofer22APU) in SOEC dual atmosphere were investigated. The samples were exposed in SOEC dual and simple atmospheres at 700 °C for 500 h. Then, their cross sections were analyzed by X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray analysis. The degradation mechanisms of the separator materials in the SOEC stack operating conditions were discussed. ZMG232G10 and Crofer22APU with high Cr content showed thin oxide layer under both the dual or single atmosphere, while SUS430 with low Cr content showed significant oxidation in the H2-steam atmosphere and on the air side under the dual atmosphere condition. The significant oxidation on the air side of the dual atmosphere of SUS430 observed in this study is a unique phenomenon under the dual atmosphere condition and not observed in a single air atmosphere.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"60 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6bc4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Improvement in durability is one of the important subjects for utilizing solid oxide electrolyzer cell (SOEC) systems widely. In SOEC stacks, separators are exposed to complexed dual atmosphere (i.e. hydrogen - steam mixed gases and oxygen rich air are on each side). In this study, the degradation phenomena of separator materials (SUS430, ZMG232G10, Crofer22APU) in SOEC dual atmosphere were investigated. The samples were exposed in SOEC dual and simple atmospheres at 700 °C for 500 h. Then, their cross sections were analyzed by X-ray diffraction and scanning electron microscopy/energy-dispersive X-ray analysis. The degradation mechanisms of the separator materials in the SOEC stack operating conditions were discussed. ZMG232G10 and Crofer22APU with high Cr content showed thin oxide layer under both the dual or single atmosphere, while SUS430 with low Cr content showed significant oxidation in the H2-steam atmosphere and on the air side under the dual atmosphere condition. The significant oxidation on the air side of the dual atmosphere of SUS430 observed in this study is a unique phenomenon under the dual atmosphere condition and not observed in a single air atmosphere.
铁素体不锈钢在空气/H2+H2O 双重气氛下的加速高温氧化行为
提高耐久性是广泛使用固体氧化物电解槽(SOEC)系统的重要课题之一。在 SOEC 堆中,分离器暴露在复杂的双重气氛中(即氢气-蒸汽混合气体和富氧空气分别位于两侧)。本研究调查了分离器材料(SUS430、ZMG232G10、Crofer22APU)在 SOEC 双重气氛中的降解现象。样品在 700 ℃ 的 SOEC 双气氛和简单气氛中暴露了 500 h,然后用 X 射线衍射和扫描电子显微镜/能谱 X 射线分析法对其横截面进行了分析。讨论了分离器材料在 SOEC 堆工作条件下的降解机制。高铬含量的 ZMG232G10 和 Crofer22APU 在双气氛或单气氛条件下都显示出很薄的氧化层,而低铬含量的 SUS430 在 H2 蒸汽气氛和双气氛条件下的空气侧都显示出显著的氧化。本研究中观察到的 SUS430 在双气氛下空气侧的显著氧化现象是双气氛条件下的独特现象,在单一空气气氛下没有观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信