Ume Ruqia Tulain, Alia Erum, Bushra Maryam, Sidra, Nadia Shamshad Malik, Nariman Shahid, Abdul Malik, Muhammad Zubair Malik
{"title":"An approach to enhance drug solubility: fabrication, characterization, and safety evaluation of Felodipine polymeric nanoparticles","authors":"Ume Ruqia Tulain, Alia Erum, Bushra Maryam, Sidra, Nadia Shamshad Malik, Nariman Shahid, Abdul Malik, Muhammad Zubair Malik","doi":"10.1007/s00289-024-05458-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, Felodipine-loaded nanoparticles were prepared using the nanoprecipitation method, with quince seed mucilage serving as the polymer matrix and Tween 80 utilized as a stabilizing agent. The nanoparticles were thoroughly characterized using a range of analytical techniques, including dynamic light scattering (DLS), zeta potential measurement, Fourier-transform infrared spectroscopy (FTIR), thermal analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The Felodipine nanoparticles displayed an amorphous structure, with formulation FEL 4 achieving the highest entrapment efficiency of 67.68%. This formulation also had an average particle size of 675 ± 2.04 nm and a zeta potential of − 31.7 ± 1.34 mV. Saturation solubility tests revealed a significant enhancement in water solubility for the nanoparticles compared to pure Felodipine. Additionally, in vitro drug release studies demonstrated a sustained release profile over 24 h in phosphate buffer. Acute oral toxicity evaluations confirmed that the Felodipine nanoparticles did not exhibit any signs of toxicity. Overall, this study showed the successful fabrication of quince seed mucilage-based Felodipine-loaded nanoparticles as a promising approach to enhance solubility and achieve sustained drug release, with no evident toxicity.</p></div>","PeriodicalId":737,"journal":{"name":"Polymer Bulletin","volume":"81 17","pages":"16197 - 16217"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Bulletin","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00289-024-05458-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, Felodipine-loaded nanoparticles were prepared using the nanoprecipitation method, with quince seed mucilage serving as the polymer matrix and Tween 80 utilized as a stabilizing agent. The nanoparticles were thoroughly characterized using a range of analytical techniques, including dynamic light scattering (DLS), zeta potential measurement, Fourier-transform infrared spectroscopy (FTIR), thermal analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The Felodipine nanoparticles displayed an amorphous structure, with formulation FEL 4 achieving the highest entrapment efficiency of 67.68%. This formulation also had an average particle size of 675 ± 2.04 nm and a zeta potential of − 31.7 ± 1.34 mV. Saturation solubility tests revealed a significant enhancement in water solubility for the nanoparticles compared to pure Felodipine. Additionally, in vitro drug release studies demonstrated a sustained release profile over 24 h in phosphate buffer. Acute oral toxicity evaluations confirmed that the Felodipine nanoparticles did not exhibit any signs of toxicity. Overall, this study showed the successful fabrication of quince seed mucilage-based Felodipine-loaded nanoparticles as a promising approach to enhance solubility and achieve sustained drug release, with no evident toxicity.
期刊介绍:
"Polymer Bulletin" is a comprehensive academic journal on polymer science founded in 1988. It was founded under the initiative of the late Mr. Wang Baoren, a famous Chinese chemist and educator. This journal is co-sponsored by the Chinese Chemical Society, the Institute of Chemistry, and the Chinese Academy of Sciences and is supervised by the China Association for Science and Technology. It is a core journal and is publicly distributed at home and abroad.
"Polymer Bulletin" is a monthly magazine with multiple columns, including a project application guide, outlook, review, research papers, highlight reviews, polymer education and teaching, information sharing, interviews, polymer science popularization, etc. The journal is included in the CSCD Chinese Science Citation Database. It serves as the source journal for Chinese scientific and technological paper statistics and the source journal of Peking University's "Overview of Chinese Core Journals."