LED: Light Enhanced Depth Estimation at Night

Simon de Moreau, Yasser Almehio, Andrei Bursuc, Hafid El-Idrissi, Bogdan Stanciulescu, Fabien Moutarde
{"title":"LED: Light Enhanced Depth Estimation at Night","authors":"Simon de Moreau, Yasser Almehio, Andrei Bursuc, Hafid El-Idrissi, Bogdan Stanciulescu, Fabien Moutarde","doi":"arxiv-2409.08031","DOIUrl":null,"url":null,"abstract":"Nighttime camera-based depth estimation is a highly challenging task,\nespecially for autonomous driving applications, where accurate depth perception\nis essential for ensuring safe navigation. We aim to improve the reliability of\nperception systems at night time, where models trained on daytime data often\nfail in the absence of precise but costly LiDAR sensors. In this work, we\nintroduce Light Enhanced Depth (LED), a novel cost-effective approach that\nsignificantly improves depth estimation in low-light environments by harnessing\na pattern projected by high definition headlights available in modern vehicles.\nLED leads to significant performance boosts across multiple depth-estimation\narchitectures (encoder-decoder, Adabins, DepthFormer) both on synthetic and\nreal datasets. Furthermore, increased performances beyond illuminated areas\nreveal a holistic enhancement in scene understanding. Finally, we release the\nNighttime Synthetic Drive Dataset, a new synthetic and photo-realistic\nnighttime dataset, which comprises 49,990 comprehensively annotated images.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. We aim to improve the reliability of perception systems at night time, where models trained on daytime data often fail in the absence of precise but costly LiDAR sensors. In this work, we introduce Light Enhanced Depth (LED), a novel cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a new synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.
发光二极管夜间光增强深度估计
基于摄像头的夜间深度估计是一项极具挑战性的任务,尤其是在自动驾驶应用中,准确的深度感知对于确保导航安全至关重要。我们的目标是提高夜间感知系统的可靠性,因为在缺乏精确但昂贵的激光雷达传感器的情况下,根据白天数据训练的模型往往会失败。在这项工作中,我们引入了光增强深度(Light Enhanced Depth,LED),这是一种新颖的高性价比方法,通过利用现代汽车高清前大灯投射的图案,显著提高了低光环境下的深度估计能力。此外,照明区域之外的性能提升也显示出场景理解能力的全面增强。最后,我们发布了夜间合成驱动数据集(Nighttime Synthetic Drive Dataset),这是一个全新的合成和照片逼真夜间数据集,包含 49,990 张全面注释的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信