Real-time Multi-view Omnidirectional Depth Estimation System for Robots and Autonomous Driving on Real Scenes

Ming Li, Xiong Yang, Chaofan Wu, Jiaheng Li, Pinzhi Wang, Xuejiao Hu, Sidan Du, Yang Li
{"title":"Real-time Multi-view Omnidirectional Depth Estimation System for Robots and Autonomous Driving on Real Scenes","authors":"Ming Li, Xiong Yang, Chaofan Wu, Jiaheng Li, Pinzhi Wang, Xuejiao Hu, Sidan Du, Yang Li","doi":"arxiv-2409.07843","DOIUrl":null,"url":null,"abstract":"Omnidirectional Depth Estimation has broad application prospects in fields\nsuch as robotic navigation and autonomous driving. In this paper, we propose a\nrobotic prototype system and corresponding algorithm designed to validate\nomnidirectional depth estimation for navigation and obstacle avoidance in\nreal-world scenarios for both robots and vehicles. The proposed HexaMODE system\ncaptures 360$^\\circ$ depth maps using six surrounding arranged fisheye cameras.\nWe introduce a combined spherical sweeping method and optimize the model\narchitecture for proposed RtHexa-OmniMVS algorithm to achieve real-time\nomnidirectional depth estimation. To ensure high accuracy, robustness, and\ngeneralization in real-world environments, we employ a teacher-student\nself-training strategy, utilizing large-scale unlabeled real-world data for\nmodel training. The proposed algorithm demonstrates high accuracy in various\ncomplex real-world scenarios, both indoors and outdoors, achieving an inference\nspeed of 15 fps on edge computing platforms.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Omnidirectional Depth Estimation has broad application prospects in fields such as robotic navigation and autonomous driving. In this paper, we propose a robotic prototype system and corresponding algorithm designed to validate omnidirectional depth estimation for navigation and obstacle avoidance in real-world scenarios for both robots and vehicles. The proposed HexaMODE system captures 360$^\circ$ depth maps using six surrounding arranged fisheye cameras. We introduce a combined spherical sweeping method and optimize the model architecture for proposed RtHexa-OmniMVS algorithm to achieve real-time omnidirectional depth estimation. To ensure high accuracy, robustness, and generalization in real-world environments, we employ a teacher-student self-training strategy, utilizing large-scale unlabeled real-world data for model training. The proposed algorithm demonstrates high accuracy in various complex real-world scenarios, both indoors and outdoors, achieving an inference speed of 15 fps on edge computing platforms.
用于真实场景中机器人和自动驾驶汽车的实时多视角全方位深度估算系统
全向深度估计在机器人导航和自动驾驶等领域有着广阔的应用前景。在本文中,我们提出了一个机器人原型系统和相应的算法,旨在验证全向深度估计在真实世界场景中的导航和避障功能,适用于机器人和车辆。我们引入了一种组合球面扫描方法,并优化了 RtHexa-OmniMVS 算法的模型架构,以实现实时单向深度估计。为了确保在真实世界环境中的高精度、鲁棒性和泛化,我们采用了师生自我训练策略,利用大规模无标记真实世界数据进行模型训练。所提出的算法在室内和室外各种复杂的真实世界场景中都表现出了很高的准确性,在边缘计算平台上实现了 15 fps 的推断速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信