Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning

William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur
{"title":"Learning Skateboarding for Humanoid Robots through Massively Parallel Reinforcement Learning","authors":"William Thibault, Vidyasagar Rajendran, William Melek, Katja Mombaur","doi":"arxiv-2409.07846","DOIUrl":null,"url":null,"abstract":"Learning-based methods have proven useful at generating complex motions for\nrobots, including humanoids. Reinforcement learning (RL) has been used to learn\nlocomotion policies, some of which leverage a periodic reward formulation. This\nwork extends the periodic reward formulation of locomotion to skateboarding for\nthe REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast\ntraining. Initial results in simulation are presented with hardware experiments\nin progress.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based methods have proven useful at generating complex motions for robots, including humanoids. Reinforcement learning (RL) has been used to learn locomotion policies, some of which leverage a periodic reward formulation. This work extends the periodic reward formulation of locomotion to skateboarding for the REEM-C robot. Brax/MJX is used to implement the RL problem to achieve fast training. Initial results in simulation are presented with hardware experiments in progress.
通过大规模并行强化学习为仿人机器人学习滑板运动
事实证明,基于学习的方法有助于为机器人(包括人形机器人)生成复杂的运动。强化学习(RL)已被用于学习运动策略,其中一些策略利用了周期性奖励公式。本研究将运动的周期性奖励公式扩展到 REEM-C 机器人的滑板运动。Brax/MJX 用于实现 RL 问题,以实现快速训练。本文介绍了仿真的初步结果,硬件实验正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信