ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable

Yuan Yin, Pegah Khayatan, Éloi Zablocki, Alexandre Boulch, Matthieu Cord
{"title":"ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable","authors":"Yuan Yin, Pegah Khayatan, Éloi Zablocki, Alexandre Boulch, Matthieu Cord","doi":"arxiv-2409.07830","DOIUrl":null,"url":null,"abstract":"Machine learning based autonomous driving systems often face challenges with\nsafety-critical scenarios that are rare in real-world data, hindering their\nlarge-scale deployment. While increasing real-world training data coverage\ncould address this issue, it is costly and dangerous. This work explores\ngenerating safety-critical driving scenarios by modifying complex real-world\nregular scenarios through trajectory optimization. We propose ReGentS, which\nstabilizes generated trajectories and introduces heuristics to avoid obvious\ncollisions and optimization problems. Our approach addresses unrealistic\ndiverging trajectories and unavoidable collision scenarios that are not useful\nfor training robust planner. We also extend the scenario generation framework\nto handle real-world data with up to 32 agents. Additionally, by using a\ndifferentiable simulator, our approach simplifies gradient descent-based\noptimization involving a simulator, paving the way for future advancements. The\ncode is available at https://github.com/valeoai/ReGentS.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data, hindering their large-scale deployment. While increasing real-world training data coverage could address this issue, it is costly and dangerous. This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization. We propose ReGentS, which stabilizes generated trajectories and introduces heuristics to avoid obvious collisions and optimization problems. Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner. We also extend the scenario generation framework to handle real-world data with up to 32 agents. Additionally, by using a differentiable simulator, our approach simplifies gradient descent-based optimization involving a simulator, paving the way for future advancements. The code is available at https://github.com/valeoai/ReGentS.
ReGentS:稳定生成真实世界的安全关键驾驶场景
基于机器学习的自动驾驶系统经常面临安全关键场景的挑战,而这些场景在真实世界的数据中很少见,这阻碍了它们的大规模部署。虽然增加真实世界训练数据的覆盖面可以解决这个问题,但成本高昂且危险。这项工作探索通过轨迹优化修改复杂的真实世界常规场景来生成安全关键驾驶场景。我们提出了 ReGentS,它能稳定生成的轨迹,并引入启发式方法来避免明显的碰撞和优化问题。我们的方法可以解决不切实际的发散轨迹和无法避免的碰撞情况,这些情况对训练鲁棒规划器并无益处。我们还扩展了场景生成框架,以处理多达 32 个代理的真实世界数据。此外,通过使用可变模拟器,我们的方法简化了涉及模拟器的基于梯度下降的优化,为未来的进步铺平了道路。代码见 https://github.com/valeoai/ReGentS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信