Diatomic Catalysts for Aqueous Zinc-Iodine Batteries: Mechanistic Insights and Design Strategies

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peng Hei, Ya Sai, Wenjie Li, Jianming Meng, Yulai Lin, Xiaoqi Sun, Jing Wang, Yu Song, Xiao-Xia Liu
{"title":"Diatomic Catalysts for Aqueous Zinc-Iodine Batteries: Mechanistic Insights and Design Strategies","authors":"Peng Hei,&nbsp;Ya Sai,&nbsp;Wenjie Li,&nbsp;Jianming Meng,&nbsp;Yulai Lin,&nbsp;Xiaoqi Sun,&nbsp;Jing Wang,&nbsp;Yu Song,&nbsp;Xiao-Xia Liu","doi":"10.1002/anie.202410848","DOIUrl":null,"url":null,"abstract":"<p>There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn−Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn−NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and remarkable cycling stability over 320,000 cycles. The electron hopping along the Mn−N−Zn bridge is stimulated via a spin exchange mechanism. This process broadens the Mn 3d<sub>xy</sub> band width and enhances the metallic character of the catalyst, thus facilitating charge transfer between the catalysts and reaction intermediates. Additionally, the increased electron occupancy within the d-orbital of Zn elevates Zn's d-band center, thereby enhancing chemical interactions between MnZn−NC and I-based species. Furthermore, our mechanism demonstrates potential applicability to other Metal-Zn−NC DACs with spin-polarized atoms. Our work elucidates a clear mechanistic understanding of diatomic catalysts and provides new insights into catalyst design for AZIBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 49","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202410848","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There has been a growing interest in developing catalysts to enable the reversible iodine conversion reaction for high-performance aqueous zinc-iodine batteries (AZIBs). While diatomic catalysts (DACs) have demonstrated superior performance in various catalytic reactions due to their ability to facilitate synergistic charge interactions, their application in AZIBs remains unexplored. Herein, we present, for the first time, a DAC comprising Mn−Zn dual atoms anchored on a nitrogen-doped carbon matrix (MnZn−NC) for iodine loading, resulting in a high-performance AZIB with a capacity of 224 mAh g−1 at 1 A g−1 and remarkable cycling stability over 320,000 cycles. The electron hopping along the Mn−N−Zn bridge is stimulated via a spin exchange mechanism. This process broadens the Mn 3dxy band width and enhances the metallic character of the catalyst, thus facilitating charge transfer between the catalysts and reaction intermediates. Additionally, the increased electron occupancy within the d-orbital of Zn elevates Zn's d-band center, thereby enhancing chemical interactions between MnZn−NC and I-based species. Furthermore, our mechanism demonstrates potential applicability to other Metal-Zn−NC DACs with spin-polarized atoms. Our work elucidates a clear mechanistic understanding of diatomic catalysts and provides new insights into catalyst design for AZIBs.

Abstract Image

水性锌碘电池的二原子催化剂:机理认识与设计策略
人们对开发催化剂以实现高性能水性锌碘电池(AZIB)的可逆碘转化反应越来越感兴趣。虽然二原子催化剂(DAC)因其促进电荷协同作用的能力而在各种催化反应中表现出卓越的性能,但它们在 AZIB 中的应用仍有待探索。在此,我们首次提出了一种由锚定在掺氮碳基质(MnZn-NC)上的 Mn-Zn 双原子组成的 DAC,用于碘负载,从而产生了一种高性能的 AZIB,在 1 A g-1 的条件下,其容量为 224 mAh g-1,并且在 320,000 个循环周期内具有显著的循环稳定性。电子沿 Mn-N-Zn 桥的跳跃是通过自旋交换机制激发的。这一过程拓宽了 Mn 3dxy 带宽,增强了催化剂的金属特性,从而促进了催化剂与反应中间产物之间的电荷转移。此外,由于 Zn 的 d 轨道内电子占有率增加,Zn 的 d 带中心升高,从而增强了 MnZn-NC 与 I 型物种之间的化学作用。此外,我们的研究机制还证明了其对其他具有自旋极化原子的金属-Zn-NC DAC 的潜在适用性。我们的工作阐明了对二原子催化剂的清晰机理认识,并为 AZIB 的催化剂设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信