{"title":"Room temperature magnetoelectric magnetic spirals by design","authors":"Arnau Romaguera, Marisa Medarde","doi":"10.3389/fmats.2024.1448765","DOIUrl":null,"url":null,"abstract":"Frustrated magnets with ordered magnetic spiral phases that spontaneously break inversion symmetry have received significant attention from both fundamental and applied sciences communities due to the experimental demonstration that some of these materials can couple to the lattice and induce electric polarization. In these materials, the common origin of the electric and magnetic orders guarantees substantial coupling between them, which is highly desirable for applications. However, their low-magnetic ordering temperatures (typically <jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:mo><</mml:mo></mml:math></jats:inline-formula> 100 K) greatly restrict their fields of application. Recently, investigations on Cu/Fe-based layered perovskites uncovered an unexpected knob to control the stability range of a magnetic spiral-chemical disorder-, which has been successfully employed to stabilize magnetic spiral phases at temperatures as high as 400 K. These unexpected observations, which are hard to conciliate with traditional magnetic frustration mechanisms, were recently rationalized in terms of an original, local frustration model that explicitly accounts for the presence of disorder. In this mini-review, we summarize the main experimental observations on Cu/Fe layered perovskites, which show excellent agreement with the predictions of this novel magnetic frustration mechanism. We also present different strategies aimed at exploiting these experimental and theoretical developments for the design of materials featuring magnetoelectric spirals stable up to temperatures high enough for daily-life applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1448765","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Frustrated magnets with ordered magnetic spiral phases that spontaneously break inversion symmetry have received significant attention from both fundamental and applied sciences communities due to the experimental demonstration that some of these materials can couple to the lattice and induce electric polarization. In these materials, the common origin of the electric and magnetic orders guarantees substantial coupling between them, which is highly desirable for applications. However, their low-magnetic ordering temperatures (typically < 100 K) greatly restrict their fields of application. Recently, investigations on Cu/Fe-based layered perovskites uncovered an unexpected knob to control the stability range of a magnetic spiral-chemical disorder-, which has been successfully employed to stabilize magnetic spiral phases at temperatures as high as 400 K. These unexpected observations, which are hard to conciliate with traditional magnetic frustration mechanisms, were recently rationalized in terms of an original, local frustration model that explicitly accounts for the presence of disorder. In this mini-review, we summarize the main experimental observations on Cu/Fe layered perovskites, which show excellent agreement with the predictions of this novel magnetic frustration mechanism. We also present different strategies aimed at exploiting these experimental and theoretical developments for the design of materials featuring magnetoelectric spirals stable up to temperatures high enough for daily-life applications.
期刊介绍:
Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide.
Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.