{"title":"Dynamic properties of CO2-cured foam concrete at different loading rates: Effect of the foam admixtures and addition of polypropylene fiber","authors":"Yunlin Liu, Shangwei Huo, Jiali Fu, Tingbo Shi, Dong Guo","doi":"10.3389/fmats.2024.1445848","DOIUrl":null,"url":null,"abstract":"This paper investigated the dynamic mechanical properties of CO<jats:sub>2</jats:sub>-cured foam concrete under varying conditions, focusing on the effects of foam admixture and fiber reinforcement. The study tends to enrich the knowledge regarding the performance of CO<jats:sub>2</jats:sub>-cured foam concrete under different loading rates, especially in relation to density and matrix strength. The foam admixture of the specimens ranges from 26% to 55%, achieving density from 600 kg/m<jats:sup>3</jats:sup> to 1,000 kg/m<jats:sup>3</jats:sup>. The specimens were loaded at strain rates from 80 s<jats:sup>-1</jats:sup> to 398 s<jats:sup>-1</jats:sup>. Experimental results revealed the dynamic elastic modulus, dynamic compressive strength, and Dynamic Increase Factor (DIF) showed a strong correlation with the foam admixture and density. In addition, the incorporation of polypropylene (PP) fibers effectively improved the mechanical behavior of the foam concrete, achieving up to a 17% increase in dynamic compressive strength. This comprehensive analysis highlights the critical role of foam admixture and fiber reinforcement in determining the dynamic properties of CO<jats:sub>2</jats:sub>-cured foam concrete and provides valuable insights for optimizing the dynamic performance of foam concrete in various construction applications.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"7 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1445848","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigated the dynamic mechanical properties of CO2-cured foam concrete under varying conditions, focusing on the effects of foam admixture and fiber reinforcement. The study tends to enrich the knowledge regarding the performance of CO2-cured foam concrete under different loading rates, especially in relation to density and matrix strength. The foam admixture of the specimens ranges from 26% to 55%, achieving density from 600 kg/m3 to 1,000 kg/m3. The specimens were loaded at strain rates from 80 s-1 to 398 s-1. Experimental results revealed the dynamic elastic modulus, dynamic compressive strength, and Dynamic Increase Factor (DIF) showed a strong correlation with the foam admixture and density. In addition, the incorporation of polypropylene (PP) fibers effectively improved the mechanical behavior of the foam concrete, achieving up to a 17% increase in dynamic compressive strength. This comprehensive analysis highlights the critical role of foam admixture and fiber reinforcement in determining the dynamic properties of CO2-cured foam concrete and provides valuable insights for optimizing the dynamic performance of foam concrete in various construction applications.
期刊介绍:
Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide.
Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.