V. R. Chzhjou, O. V. Bakina, N. V. Svarovskaya, E. G. Khorobraya
{"title":"Modification of Polypropylene by Heterophase ZnO–Ag Nanoparticles","authors":"V. R. Chzhjou, O. V. Bakina, N. V. Svarovskaya, E. G. Khorobraya","doi":"10.1007/s11182-024-03236-8","DOIUrl":null,"url":null,"abstract":"<p>In the present work, we synthesized ZnO–Ag heterophase nanoparticles and ZnO–Ag modified polypropylene (PP) granules toward the degradation of dye under visible light irradiation. The nanoparticles (NPs) were produced by electrical explosion of zinc and silver twisted wires in oxygen-containing atmosphere. The heterophase structure of ZnO–Ag nanoparticles plays an important role in the enhancing the photocatalytic dye removal through the localized surface plasmon resonance effect of silver. In our investigation, the 0.5 wt.% NPs on the PP granule surface are the best composite samples to achieve the best methylene blue dye degradation (99.7%). The ZnO–Ag heterojunction retains an excellent performance of 46.4% even after being used repetitively for 4 cycling tests. This is the first report on the ZnO–Ag–ZnO/polypropylene granules to advance polymer technology for food storage and self-cleaning coating in the near future.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03236-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, we synthesized ZnO–Ag heterophase nanoparticles and ZnO–Ag modified polypropylene (PP) granules toward the degradation of dye under visible light irradiation. The nanoparticles (NPs) were produced by electrical explosion of zinc and silver twisted wires in oxygen-containing atmosphere. The heterophase structure of ZnO–Ag nanoparticles plays an important role in the enhancing the photocatalytic dye removal through the localized surface plasmon resonance effect of silver. In our investigation, the 0.5 wt.% NPs on the PP granule surface are the best composite samples to achieve the best methylene blue dye degradation (99.7%). The ZnO–Ag heterojunction retains an excellent performance of 46.4% even after being used repetitively for 4 cycling tests. This is the first report on the ZnO–Ag–ZnO/polypropylene granules to advance polymer technology for food storage and self-cleaning coating in the near future.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.