Yi Zhong, Jun Du, Yongzhi Wang, Ping Li, Guoqiang Xu, Hongbin Miu, Peiyu Zhang, Shenghui Jiang, Wei Gao
{"title":"Modeling the Impacts of Land Reclamation on Sediment Dynamics in a Semi-Enclosed Bay","authors":"Yi Zhong, Jun Du, Yongzhi Wang, Ping Li, Guoqiang Xu, Hongbin Miu, Peiyu Zhang, Shenghui Jiang, Wei Gao","doi":"10.3390/jmse12091633","DOIUrl":null,"url":null,"abstract":"Semi-enclosed bays are significantly influenced by the interactions between land and sea, as well as human activities. One notable human activity, land reclamation, impacts water exchange within these bays. However, the variability of sediment transport and cross-bay transport following reclamation remains poorly understood. This study aims to enhance the understanding of sediment dynamics and the responses of cross-bay transport to reclamation. A well-validated three-dimensional numerical model was developed in the Laizhou Bay (LB). Following reclamation, tidal currents suspended sediment concentration, and erosion increased seaward, while these factors decreased landward. In LB, surface and bottom subtidal currents flowed in opposite directions, with the direction of volume transport primarily determined by bottom currents. In the western LB, volume and sediment transport exhibited an anticyclonic pattern, with pronounced seasonal variations observed elsewhere. During summer, volume and sediment transport predominantly occurred from the northeast to the southwest. In winter, volume transport in northern LB was directed westward, while it was eastward in the southern part; sediment transport was primarily eastward. Advection played a significant role in sediment transport dynamics. The pathway of cross-bay sediment transport was primarily located in the central part of the bay. Notably, the cross-bay sediment transport flux in winter was approximately 3.5 times greater than in summer, with reclamation resulting in a reduction in cross-bay transport flux by about 22.17%.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091633","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-enclosed bays are significantly influenced by the interactions between land and sea, as well as human activities. One notable human activity, land reclamation, impacts water exchange within these bays. However, the variability of sediment transport and cross-bay transport following reclamation remains poorly understood. This study aims to enhance the understanding of sediment dynamics and the responses of cross-bay transport to reclamation. A well-validated three-dimensional numerical model was developed in the Laizhou Bay (LB). Following reclamation, tidal currents suspended sediment concentration, and erosion increased seaward, while these factors decreased landward. In LB, surface and bottom subtidal currents flowed in opposite directions, with the direction of volume transport primarily determined by bottom currents. In the western LB, volume and sediment transport exhibited an anticyclonic pattern, with pronounced seasonal variations observed elsewhere. During summer, volume and sediment transport predominantly occurred from the northeast to the southwest. In winter, volume transport in northern LB was directed westward, while it was eastward in the southern part; sediment transport was primarily eastward. Advection played a significant role in sediment transport dynamics. The pathway of cross-bay sediment transport was primarily located in the central part of the bay. Notably, the cross-bay sediment transport flux in winter was approximately 3.5 times greater than in summer, with reclamation resulting in a reduction in cross-bay transport flux by about 22.17%.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.