{"title":"Numerical Investigation of the Hydrodynamic Characteristics of a Novel Bucket-Shaped Permeable Breakwater Using OpenFOAM","authors":"Anqi Yuan, Dongxu Wang, Yuejiao Jiang, Yifeng Wang, Jinsong Gui","doi":"10.3390/jmse12091574","DOIUrl":null,"url":null,"abstract":"To align with contemporary concepts of low-carbon and environmental protection, a new type of bucket-shaped permeable breakwater, based on the prototype of the bucket-based breakwater in Xuwei Port Area, Lianyungang, Jiangsu Province, China, was proposed. A three-dimensional numerical wave flume was constructed using the OpenFOAM platform and DXFlow (an open-source computational fluid dynamics toolbox based on OpenFOAM). The effectiveness of this numerical wave flume was validated through temporal and spatial verification, wave generation validation, and model testing. The study investigated the effects of bucket porosity, opening shapes, number of openings, and the positioning of these openings on the wave-dissipating performance under regular wave conditions. It analyzed the force characteristics near the openings. The results showed that within the relative wavelength range of L/D between 6.7 and 12.7, relative wave height H/d between 0.175 and 0.275, changes in wavelength had a limited impact on the wave-dissipating performance of the bucket-shaped permeable breakwater. The wave-dissipating performance was primarily related to the porosity, with the optimal overall wave-dissipating performance occurring at a bucket porosity of 12%. The shape and number of openings had a minimal relationship with performance. Additionally, the connecting walls of this type of breakwater experienced the most significant wave impact, suggesting that these areas should be reinforced in practical engineering applications.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"111 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091574","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
To align with contemporary concepts of low-carbon and environmental protection, a new type of bucket-shaped permeable breakwater, based on the prototype of the bucket-based breakwater in Xuwei Port Area, Lianyungang, Jiangsu Province, China, was proposed. A three-dimensional numerical wave flume was constructed using the OpenFOAM platform and DXFlow (an open-source computational fluid dynamics toolbox based on OpenFOAM). The effectiveness of this numerical wave flume was validated through temporal and spatial verification, wave generation validation, and model testing. The study investigated the effects of bucket porosity, opening shapes, number of openings, and the positioning of these openings on the wave-dissipating performance under regular wave conditions. It analyzed the force characteristics near the openings. The results showed that within the relative wavelength range of L/D between 6.7 and 12.7, relative wave height H/d between 0.175 and 0.275, changes in wavelength had a limited impact on the wave-dissipating performance of the bucket-shaped permeable breakwater. The wave-dissipating performance was primarily related to the porosity, with the optimal overall wave-dissipating performance occurring at a bucket porosity of 12%. The shape and number of openings had a minimal relationship with performance. Additionally, the connecting walls of this type of breakwater experienced the most significant wave impact, suggesting that these areas should be reinforced in practical engineering applications.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.