Yongzhuang Tang, Qidou Zhou, Yucun Pan, Xiaojun Lü, Xiaowei Wang
{"title":"Experimental Study of Omnidirectional Scattering Characteristics of Complex Scale Targets Based on Coded Signals","authors":"Yongzhuang Tang, Qidou Zhou, Yucun Pan, Xiaojun Lü, Xiaowei Wang","doi":"10.3390/jmse12091590","DOIUrl":null,"url":null,"abstract":"To investigate the omnidirectional geometric scattering characteristics of an underwater vehicle and the target detection performance of phase coded (BPSK) signals, acoustic scattering tests were carried out in an anechoic chamber using the Suboff scale model. To mitigate the overlapping interference of the direct wave on the scattering wave in the limited test space, physical suppression with an “anechoic cloak” and direct wave cancellation were proposed. Target echo and reflection wave tests at different offset angles were carried out, and the accuracy of the BPSK signal in acquiring highlight features and the feasibility of anechoic chamber tests were verified through comparison with theoretical range profiles. A series of echo and omnidirectional scattering characteristics were obtained through the experiment and simulation, which verified the effectiveness of the low-frequency submarine model detection (there were still strong scattering waves at the dimensionless frequency ka = 1.88). Comparison tests of CW, LFM, and BPSK signals were carried out, and the measured data proved that the BPSK signal had the advantages of low sidelobe, high resolution, and noise resistance in target detection. The acoustic scattering test method designed in this study and the omnidirectional scattering characteristics obtained can be used as a reference for semi-physical target acoustic scattering simulations and practical multistatic detection.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"60 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091590","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the omnidirectional geometric scattering characteristics of an underwater vehicle and the target detection performance of phase coded (BPSK) signals, acoustic scattering tests were carried out in an anechoic chamber using the Suboff scale model. To mitigate the overlapping interference of the direct wave on the scattering wave in the limited test space, physical suppression with an “anechoic cloak” and direct wave cancellation were proposed. Target echo and reflection wave tests at different offset angles were carried out, and the accuracy of the BPSK signal in acquiring highlight features and the feasibility of anechoic chamber tests were verified through comparison with theoretical range profiles. A series of echo and omnidirectional scattering characteristics were obtained through the experiment and simulation, which verified the effectiveness of the low-frequency submarine model detection (there were still strong scattering waves at the dimensionless frequency ka = 1.88). Comparison tests of CW, LFM, and BPSK signals were carried out, and the measured data proved that the BPSK signal had the advantages of low sidelobe, high resolution, and noise resistance in target detection. The acoustic scattering test method designed in this study and the omnidirectional scattering characteristics obtained can be used as a reference for semi-physical target acoustic scattering simulations and practical multistatic detection.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.