Yucheng Zou, Yuan Du, Zhe Zhao, Fuzhen Pang, Haichao Li, David Hui
{"title":"Experimental and Simulation Study on Flow-Induced Vibration of Underwater Vehicle","authors":"Yucheng Zou, Yuan Du, Zhe Zhao, Fuzhen Pang, Haichao Li, David Hui","doi":"10.3390/jmse12091597","DOIUrl":null,"url":null,"abstract":"At high speeds, flow-induced vibration noise is the main component of underwater vehicle noise. The turbulent fluctuating pressure is the main excitation source of this noise. It can cause vibration of the underwater vehicle’s shell and eventually radiate noise outward. Therefore, by reducing the turbulent pressure fluctuation or controlling the vibration of the underwater vehicle’s shell, the radiation noise of the underwater vehicle can be effectively reduced. This study designs a cone–column–sphere composite structure. Firstly, the effect of fluid–structure coupling on pulsating pressure is studied. Next, a machine learning method is used to predict the turbulent pressure fluctuations and the fluid-induced vibration response of the structure at different speeds. The results were compared with experimental and numerical simulation results. The results show that the deformation of the structure will affect the flow field distribution and pulsating pressure of the cylindrical section. The machine learning method based on the BP (back propagation) neural network model can quickly predict the pulsating pressure and vibration response of the cone–cylinder–sphere composite structure under different Reynolds numbers. Compared with the experimental results, the error of the machine learning prediction results is less than 7%. The research method proposed in this paper provides a new solution for the rapid prediction and control of hydrodynamic vibration noise of underwater vehicles.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"60 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091597","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
At high speeds, flow-induced vibration noise is the main component of underwater vehicle noise. The turbulent fluctuating pressure is the main excitation source of this noise. It can cause vibration of the underwater vehicle’s shell and eventually radiate noise outward. Therefore, by reducing the turbulent pressure fluctuation or controlling the vibration of the underwater vehicle’s shell, the radiation noise of the underwater vehicle can be effectively reduced. This study designs a cone–column–sphere composite structure. Firstly, the effect of fluid–structure coupling on pulsating pressure is studied. Next, a machine learning method is used to predict the turbulent pressure fluctuations and the fluid-induced vibration response of the structure at different speeds. The results were compared with experimental and numerical simulation results. The results show that the deformation of the structure will affect the flow field distribution and pulsating pressure of the cylindrical section. The machine learning method based on the BP (back propagation) neural network model can quickly predict the pulsating pressure and vibration response of the cone–cylinder–sphere composite structure under different Reynolds numbers. Compared with the experimental results, the error of the machine learning prediction results is less than 7%. The research method proposed in this paper provides a new solution for the rapid prediction and control of hydrodynamic vibration noise of underwater vehicles.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.