{"title":"Gaze-Assisted Prescribed Performance Controller for AUV Trajectory Tracking in Time-Varying Currents","authors":"Zhuoyu Zhang, Mingwei Lin, Dejun Li, Ri Lin","doi":"10.3390/jmse12091643","DOIUrl":null,"url":null,"abstract":"Trajectory tracking for underactuated autonomous underwater vehicles (AUVs) is challenging due to coupling dynamics, modeling inaccuracies, and unknown disturbances. To tackle this, we propose a decoupling gaze-assisted prescribed performance controller (GAPPC). We first use an error transformation approach to achieve the prescribed performance, incorporating the line-of-sight (LOS) algorithm and an event-triggering mechanism to handle the kinematic characteristics of underactuated AUVs. Next, we develop a control strategy for the transformed error that does not require knowledge of the model parameters, including fast dynamic compensation to reduce steady-state errors. Finally, we analyze the controller’s stability and present simulation results. Simulations, which account for modeling inaccuracies and unknown ocean currents, show that the GAPPC improves stability errors by 67.3% compared to the adaptive robust controller.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091643","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Trajectory tracking for underactuated autonomous underwater vehicles (AUVs) is challenging due to coupling dynamics, modeling inaccuracies, and unknown disturbances. To tackle this, we propose a decoupling gaze-assisted prescribed performance controller (GAPPC). We first use an error transformation approach to achieve the prescribed performance, incorporating the line-of-sight (LOS) algorithm and an event-triggering mechanism to handle the kinematic characteristics of underactuated AUVs. Next, we develop a control strategy for the transformed error that does not require knowledge of the model parameters, including fast dynamic compensation to reduce steady-state errors. Finally, we analyze the controller’s stability and present simulation results. Simulations, which account for modeling inaccuracies and unknown ocean currents, show that the GAPPC improves stability errors by 67.3% compared to the adaptive robust controller.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.