{"title":"An Efficient Autonomous Exploration Framework for Unmanned Surface Vehicles in Unknown Waters","authors":"Baojian Song, Jiahao Zhang, Xinjie Han, Yunsheng Fan, Zhe Sun, Yingjie Wang","doi":"10.3390/jmse12091622","DOIUrl":null,"url":null,"abstract":"The detection of unknown waters has been studied and applied in various fields, such as national defense, military operations, engineering surveying and mapping, and scene reconstruction. To improve exploration efficiency in unknown waters, this paper proposes a framework for autonomous exploration using unmanned surface vehicles (USVs). This framework, comprising a multi-stage exploration strategy and a hierarchical navigation strategy, is designed to mitigate the inherent restrictions between the exploration target point and exploration direction in USV operations. These two strategies are optimized for the exploration target point and feasible navigation route to address the problem of the USV’s limited mobility during exploration. Rapidly exploring random tree (RRT) and boundary detection methods are used in the local layer to find the boundary in front of and behind the USV, and the gain of the target point is optimized. The hierarchical navigation method is implemented in the global layer to plan appropriate navigation paths. The proposed method is tested in simulations in several virtual environments and contrasted with the conventional methods currently in use. The findings indicate that our strategy covers more ground more effectively than other methods (our method achieved an exploration efficiency ranging from 4.9 to 5.3 m2/s, whereas traditional methods ranged from 2.3 to 3.9 m2/s, which demonstrates that our approach can improve exploration efficiency by up to 200% compared to traditional methods), spending less time exploring while significantly reducing collision probability.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091622","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of unknown waters has been studied and applied in various fields, such as national defense, military operations, engineering surveying and mapping, and scene reconstruction. To improve exploration efficiency in unknown waters, this paper proposes a framework for autonomous exploration using unmanned surface vehicles (USVs). This framework, comprising a multi-stage exploration strategy and a hierarchical navigation strategy, is designed to mitigate the inherent restrictions between the exploration target point and exploration direction in USV operations. These two strategies are optimized for the exploration target point and feasible navigation route to address the problem of the USV’s limited mobility during exploration. Rapidly exploring random tree (RRT) and boundary detection methods are used in the local layer to find the boundary in front of and behind the USV, and the gain of the target point is optimized. The hierarchical navigation method is implemented in the global layer to plan appropriate navigation paths. The proposed method is tested in simulations in several virtual environments and contrasted with the conventional methods currently in use. The findings indicate that our strategy covers more ground more effectively than other methods (our method achieved an exploration efficiency ranging from 4.9 to 5.3 m2/s, whereas traditional methods ranged from 2.3 to 3.9 m2/s, which demonstrates that our approach can improve exploration efficiency by up to 200% compared to traditional methods), spending less time exploring while significantly reducing collision probability.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.