{"title":"Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach","authors":"Dhruv Patel, Krunal J. Suthar, Hemant Kumar Balsora, Dhara Patel, Swapna Rekha Panda, Nirav Bhavsar","doi":"10.1002/apj.3151","DOIUrl":null,"url":null,"abstract":"Deep eutectic solvents (DESs) are increasingly recognized as sustainable alternatives suitable for a range of industrial applications. A precise comprehension of their properties is important for progress in science and engineering. In this study, we synthesized four novel ternary DESs using mandelic acid and measured their densities and viscosities at temperatures ranging from 298 to 353 K. Subsequently, an artificial neural network model was developed to predict DES density and viscosity based on temperature, critical properties, acentric factor, and molar ratio. The neural network parameters were optimized using experimental data from synthesized DESs and literature sources, both collectively over 500 data points for density and viscosity. Additionally, we investigated the influence of input parameters on model accuracy and assessed their significance. The results show that the average percentage relative error was 0.501 for density and 4.81 for viscosity. This research helps advance science and engineering applications of DESs.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3151","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Deep eutectic solvents (DESs) are increasingly recognized as sustainable alternatives suitable for a range of industrial applications. A precise comprehension of their properties is important for progress in science and engineering. In this study, we synthesized four novel ternary DESs using mandelic acid and measured their densities and viscosities at temperatures ranging from 298 to 353 K. Subsequently, an artificial neural network model was developed to predict DES density and viscosity based on temperature, critical properties, acentric factor, and molar ratio. The neural network parameters were optimized using experimental data from synthesized DESs and literature sources, both collectively over 500 data points for density and viscosity. Additionally, we investigated the influence of input parameters on model accuracy and assessed their significance. The results show that the average percentage relative error was 0.501 for density and 4.81 for viscosity. This research helps advance science and engineering applications of DESs.
人们日益认识到,深共晶溶剂(DES)是适合一系列工业应用的可持续替代品。准确了解它们的特性对于科学和工程领域的进步非常重要。在这项研究中,我们利用扁桃酸合成了四种新型三元 DES,并测量了它们在 298 至 353 K 温度范围内的密度和粘度。随后,我们建立了一个人工神经网络模型,根据温度、临界性质、中心因子和摩尔比来预测 DES 的密度和粘度。我们利用合成 DES 的实验数据和文献资料对神经网络参数进行了优化,两者在密度和粘度方面的数据点合计超过 500 个。此外,我们还研究了输入参数对模型准确性的影响,并评估了其重要性。结果表明,密度和粘度的平均相对误差分别为 0.501 和 4.81。这项研究有助于推进 DES 的科学和工程应用。
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).