{"title":"Preparation and photocatalytic mechanism of magnetic Ag2S/CoFe1.95Dy0.05O4 Z‐scheme heterojunction","authors":"Liu Qingwang, Xu Mai, Meng Ying","doi":"10.1002/apj.3153","DOIUrl":null,"url":null,"abstract":"The synthesis of high‐efficiency magnetic composite photocatalyst by doping magnetic cobalt ferrite and compounding single semiconductor photocatalyst is a promising strategy to improve the oxidation ability of photocatalytic systems. In this paper, CoFe<jats:sub>1.95</jats:sub>Dy<jats:sub>0.05</jats:sub>O<jats:sub>4</jats:sub> (CFDO) was prepared by doping Dy element into magnetic CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>, and Ag<jats:sub>2</jats:sub>S (AS)/CFDO with high‐efficiency magnetic photocatalyst was synthesized by compounding AS with CFDO as the substrate. The photocatalytic samples were characterized by different advanced characterization methods, and their photocatalytic degradation of methylene blue (MB) was studied. The results show that AS/CFDO exhibits higher visible light response, excellent photogenerated charge separation ability and migration efficiency, and excellent catalytic performance in the catalytic degradation system. The photocatalytic activity of AS/CFDO was the highest, and its photocatalytic degradation kinetic constant K was 2.48 and 1.54 times that of AS and CFDO, respectively. In addition, the catalyst contained in the catalytically contaminated solution can be effectively separated by an external magnetic field to achieve multiple cycles of degradation and recycling. The cyclic degradation experiments showed that AS/CFDO exhibited high degradation stability during the photodegradation process. After the fifth reuse, the degradation efficiency was still more than 88.0%. Finally, the possible photocatalytic mechanism of the samples was discussed. Therefore, this work provides an effective solution for the construction of photocatalysts with high efficiency, magnetic recovery, and cyclic degradation stability and avoids the secondary pollution of catalysts to organic wastewater. It is of great significance to create an environmentally friendly catalytic method for efficient cyclic degradation of organic wastewater.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"60 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3153","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of high‐efficiency magnetic composite photocatalyst by doping magnetic cobalt ferrite and compounding single semiconductor photocatalyst is a promising strategy to improve the oxidation ability of photocatalytic systems. In this paper, CoFe1.95Dy0.05O4 (CFDO) was prepared by doping Dy element into magnetic CoFe2O4, and Ag2S (AS)/CFDO with high‐efficiency magnetic photocatalyst was synthesized by compounding AS with CFDO as the substrate. The photocatalytic samples were characterized by different advanced characterization methods, and their photocatalytic degradation of methylene blue (MB) was studied. The results show that AS/CFDO exhibits higher visible light response, excellent photogenerated charge separation ability and migration efficiency, and excellent catalytic performance in the catalytic degradation system. The photocatalytic activity of AS/CFDO was the highest, and its photocatalytic degradation kinetic constant K was 2.48 and 1.54 times that of AS and CFDO, respectively. In addition, the catalyst contained in the catalytically contaminated solution can be effectively separated by an external magnetic field to achieve multiple cycles of degradation and recycling. The cyclic degradation experiments showed that AS/CFDO exhibited high degradation stability during the photodegradation process. After the fifth reuse, the degradation efficiency was still more than 88.0%. Finally, the possible photocatalytic mechanism of the samples was discussed. Therefore, this work provides an effective solution for the construction of photocatalysts with high efficiency, magnetic recovery, and cyclic degradation stability and avoids the secondary pollution of catalysts to organic wastewater. It is of great significance to create an environmentally friendly catalytic method for efficient cyclic degradation of organic wastewater.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).