Hopf bifurcation analysis of a two‐delayed diffusive predator–prey model with spatial memory of prey

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hongyan Wang, Yunxian Dai, Shumin Zhou
{"title":"Hopf bifurcation analysis of a two‐delayed diffusive predator–prey model with spatial memory of prey","authors":"Hongyan Wang, Yunxian Dai, Shumin Zhou","doi":"10.1002/mma.10416","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a diffusive predator–prey model with <jats:styled-content>spatial</jats:styled-content> memory of prey and gestation delay of predator. For the system without delays, we study the stability of the positive equilibrium in the case of diffusion and no diffusion, respectively. For the delayed model without diffusions, the existence of Hopf bifurcation is discussed. Further, we investigate the stability switches of the model with delays and diffusions when two delays change simultaneously by calculating the stability switching curves and obtain the existence of Hopf bifurcation. We also calculate the normal form of Hopf bifurcation to determine the direction of Hopf bifurcation and the stability of bifurcation periodic solutions. Finally, numerical simulations verify the theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a diffusive predator–prey model with spatial memory of prey and gestation delay of predator. For the system without delays, we study the stability of the positive equilibrium in the case of diffusion and no diffusion, respectively. For the delayed model without diffusions, the existence of Hopf bifurcation is discussed. Further, we investigate the stability switches of the model with delays and diffusions when two delays change simultaneously by calculating the stability switching curves and obtain the existence of Hopf bifurcation. We also calculate the normal form of Hopf bifurcation to determine the direction of Hopf bifurcation and the stability of bifurcation periodic solutions. Finally, numerical simulations verify the theoretical results.
具有猎物空间记忆的双延迟扩散捕食者-猎物模型的霍普夫分岔分析
本文考虑了一个具有猎物空间记忆和捕食者妊娠延迟的扩散捕食者-猎物模型。对于无延迟系统,我们分别研究了有扩散和无扩散情况下正平衡的稳定性。对于无扩散的延迟模型,我们讨论了霍普夫分岔的存在。此外,我们通过计算稳定性切换曲线,研究了有延迟和扩散的模型在两个延迟同时变化时的稳定性切换,并得到了霍普夫分岔的存在性。我们还计算了霍普夫分岔的法线形式,以确定霍普夫分岔的方向和分岔周期解的稳定性。最后,数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信