Wave propagation for the isentropic compressible Navier–Stokes/Allen–Cahn system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yazhou Chen, Houzhi Tang, Yue Zhang
{"title":"Wave propagation for the isentropic compressible Navier–Stokes/Allen–Cahn system","authors":"Yazhou Chen, Houzhi Tang, Yue Zhang","doi":"10.1002/mma.10458","DOIUrl":null,"url":null,"abstract":"We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Cauchy problem for the three‐dimensional isentropic compressible Navier–Stokes/Allen–Cahn system, which models the phase transitions in two‐component patterns interacting with a compressible fluid. Under the assumption that the initial perturbation is small and decays spatially, we establish the global existence and the pointwise behavior of strong solutions to this nonconserved system. To deal with the source terms involving the phase variable, we employ the Green's function and space‐time weighted estimates. The analysis shows that the phase variable mainly contains the diffusion wave with exponential decaying amplitude over time, and consequently the density and momentum of the compressible fluid adhere to a generalized Huygens principle.
等熵可压缩 Navier-Stokes/Allen-Cahn 系统的波传播
我们研究了三维等熵可压缩 Navier-Stokes/Allen-Cahn 系统的 Cauchy 问题,该系统模拟了与可压缩流体相互作用的双组分模式的相变。在初始扰动较小且空间衰减的假设下,我们建立了这个非守恒系统的全局存在性和强解点行为。为了处理涉及相变的源项,我们采用了格林函数和时空加权估计。分析表明,相变主要包含振幅随时间呈指数衰减的扩散波,因此可压缩流体的密度和动量遵循广义惠更斯原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信