Effects of Silicon and Aluminum Alloying on Phase Transformation and Microstructure Evolution in Fe–0.2C–2.5Mn Steel: Insights from Continuous–Cooling–Transformation and Time–Temperature–Transformation Diagrams
{"title":"Effects of Silicon and Aluminum Alloying on Phase Transformation and Microstructure Evolution in Fe–0.2C–2.5Mn Steel: Insights from Continuous–Cooling–Transformation and Time–Temperature–Transformation Diagrams","authors":"Oguz Gulbay, Alexander Gramlich, Ulrich Krupp","doi":"10.1002/srin.202400159","DOIUrl":null,"url":null,"abstract":"The impact of silicon and aluminum on phase transformation behavior, particularly bainite, and microstructure evolution in Fe–0.2C–2.5Mn steel are presented. Continuous–cooling–transformation (CCT) and time–temperature–transformation (TTT) diagrams are determined experimentally. An aluminum extended empirical formula is introduced to estimate the martensite start temperature (<jats:italic>M</jats:italic><jats:sub>s</jats:sub>) with a thorough assessment of existing formulae. Results show that aluminum significantly increases <jats:italic>M</jats:italic><jats:sub>s</jats:sub> and has a stronger influence on promoting ferritic microstructures than silicon. During continuous cooling, alongside bainite, formation of Widmanstätten structures is induced in aluminum‐alloyed steel at higher cooling rates due to increased prior austenite grain size. Silicon decelerates bainite transformation kinetics by enhancing austenite's chemical stability through carbon enrichment via preventing carbide precipitation and by strengthening austenite against displacive phase transformation via solid solution hardening. Although aluminum has similar effects, incubation time is shortened during isothermal treatment because of the increased driving force, which overcompensates for the retardation effects. A finer carbide‐free bainitic microstructure is achieved in aluminum‐alloyed steel with more pronounced film‐like retained austenite (RA) formation and superior carbon enrichment, improving RA stability and suppressing martensite–austenite island formation. Finally, with the proposed formula, an accurate approximation to experimental <jats:italic>M</jats:italic><jats:sub>s</jats:sub> is accomplished.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of silicon and aluminum on phase transformation behavior, particularly bainite, and microstructure evolution in Fe–0.2C–2.5Mn steel are presented. Continuous–cooling–transformation (CCT) and time–temperature–transformation (TTT) diagrams are determined experimentally. An aluminum extended empirical formula is introduced to estimate the martensite start temperature (Ms) with a thorough assessment of existing formulae. Results show that aluminum significantly increases Ms and has a stronger influence on promoting ferritic microstructures than silicon. During continuous cooling, alongside bainite, formation of Widmanstätten structures is induced in aluminum‐alloyed steel at higher cooling rates due to increased prior austenite grain size. Silicon decelerates bainite transformation kinetics by enhancing austenite's chemical stability through carbon enrichment via preventing carbide precipitation and by strengthening austenite against displacive phase transformation via solid solution hardening. Although aluminum has similar effects, incubation time is shortened during isothermal treatment because of the increased driving force, which overcompensates for the retardation effects. A finer carbide‐free bainitic microstructure is achieved in aluminum‐alloyed steel with more pronounced film‐like retained austenite (RA) formation and superior carbon enrichment, improving RA stability and suppressing martensite–austenite island formation. Finally, with the proposed formula, an accurate approximation to experimental Ms is accomplished.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.