Verônica Stela da Silva Lima, Arthur Cançado Schuttenberg, Geraldo Lúcio de Faria
{"title":"Effect of Quenching Post-Intercritical Austenitizing on the Microstructure and Tensile Properties of an K55 Grade Steel for Oil and Gas Industry","authors":"Verônica Stela da Silva Lima, Arthur Cançado Schuttenberg, Geraldo Lúcio de Faria","doi":"10.1002/srin.202400478","DOIUrl":null,"url":null,"abstract":"<p>The API K55 grade steel is widely utilized in seamless pipes for oil and gas exploration, especially as casing pipes for wellbores. Traditionally, this steel is processed using hot rolling followed by quenching and tempering to achieve the desired dimensional and microstructural characteristics, balancing high strength with ductility. This article introduces an alternative method to attaining the required tensile properties for API K55 grade steel by employing a biphasic microstructure (ferrite/martensite) achieved through quenching post-intercritical austenitizing heat treatment to high-strength-low-alloy steel. Thermodynamic simulations and dilatometric experiments revealed that increasing the austenitizing temperature enhances austenite formation, decreasing significantly its carbon content, which facilitates martensitic transformation and increases the <i>M</i><sub>s</sub> and <i>M</i><sub>f</sub> temperatures. A complete phase transformation mapping was presented, highlighting how the austenitizing temperature influences martensitic transformation kinetics during the quenching heat treatment. It was concluded that austenitizing at 750 °C, followed by quenching and short tempering at 650 °C, produced a biphasic microstructure with 30% ferrite and 70% martensite, providing a favorable balance between mechanical strength and ductility that meets the API K55 grade requirements, surpassing traditional methods in the industry.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400478","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The API K55 grade steel is widely utilized in seamless pipes for oil and gas exploration, especially as casing pipes for wellbores. Traditionally, this steel is processed using hot rolling followed by quenching and tempering to achieve the desired dimensional and microstructural characteristics, balancing high strength with ductility. This article introduces an alternative method to attaining the required tensile properties for API K55 grade steel by employing a biphasic microstructure (ferrite/martensite) achieved through quenching post-intercritical austenitizing heat treatment to high-strength-low-alloy steel. Thermodynamic simulations and dilatometric experiments revealed that increasing the austenitizing temperature enhances austenite formation, decreasing significantly its carbon content, which facilitates martensitic transformation and increases the Ms and Mf temperatures. A complete phase transformation mapping was presented, highlighting how the austenitizing temperature influences martensitic transformation kinetics during the quenching heat treatment. It was concluded that austenitizing at 750 °C, followed by quenching and short tempering at 650 °C, produced a biphasic microstructure with 30% ferrite and 70% martensite, providing a favorable balance between mechanical strength and ductility that meets the API K55 grade requirements, surpassing traditional methods in the industry.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming