{"title":"Constitutive Modeling of High-Temperature Deformation Behavior of Nonoriented Electrical Steels as Compared to Machine Learning","authors":"Gyanaranjan Mishra, Jubert Pasco, Thomas McCarthy, Kudakwashe Nyamuchiwa, Youliang He, Clodualdo Aranas","doi":"10.1002/srin.202300549","DOIUrl":null,"url":null,"abstract":"<p>Hot rolling is a critical thermomechanical processing step for nonoriented electrical steel (NOES) to achieve optimal mechanical and magnetic properties. Depending on the silicon and carbon contents, the electrical steel may or may not undergo austenite–ferrite phase transformation during hot rolling, which requires different process controls as the austenite and ferrite show different flow stresses at high temperatures. Herein, the high-temperature flow behaviors of two nonoriented electrical steels with silicon contents of 1.3 and 3.2 wt% are investigated through hot compression tests. The hot deformation temperature is varied from 850 to 1050 °C, and the strain rate is differentiated from 0.01 to 1.0 s<sup>−1</sup>. The measured stress-strain data are fitted using various constitutive models (combined with optimization techniques), namely, Johnson–Cook, modified Johnson–Cook, Zener–Hollomon, Hensel–Spittel, modified Hensel–Spittel, and modified Zerilli–Armstrong. The results are also compared with a model based on deep neural network (DNN). It is shown that the Hensel–Spittel model results in the smallest average absolute relative error among all the constitutive models, and the DNN model can perfectly track almost all the experimental flow stresses over the entire ranges of temperature, strain rate, and strain.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"95 12","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/srin.202300549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202300549","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Hot rolling is a critical thermomechanical processing step for nonoriented electrical steel (NOES) to achieve optimal mechanical and magnetic properties. Depending on the silicon and carbon contents, the electrical steel may or may not undergo austenite–ferrite phase transformation during hot rolling, which requires different process controls as the austenite and ferrite show different flow stresses at high temperatures. Herein, the high-temperature flow behaviors of two nonoriented electrical steels with silicon contents of 1.3 and 3.2 wt% are investigated through hot compression tests. The hot deformation temperature is varied from 850 to 1050 °C, and the strain rate is differentiated from 0.01 to 1.0 s−1. The measured stress-strain data are fitted using various constitutive models (combined with optimization techniques), namely, Johnson–Cook, modified Johnson–Cook, Zener–Hollomon, Hensel–Spittel, modified Hensel–Spittel, and modified Zerilli–Armstrong. The results are also compared with a model based on deep neural network (DNN). It is shown that the Hensel–Spittel model results in the smallest average absolute relative error among all the constitutive models, and the DNN model can perfectly track almost all the experimental flow stresses over the entire ranges of temperature, strain rate, and strain.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming