{"title":"Inhibition Behavior for the Oxidation of Si‐Doped Fe3O4: A Combined Ab Initio Molecular Dynamics and Experimental Study","authors":"Yaozu Wang, Xurui Liu, Ren Wang, Huiqing Jiang, Lisi Lu, Kaifa Zhang, Kexin Jiao, Fangyu Guo","doi":"10.1002/srin.202300768","DOIUrl":null,"url":null,"abstract":"The magnetite oxidation process involves magnetite surface adsorption and O<jats:sub>2</jats:sub> dissociation, and the presence of impurity elements such as silicon inevitably affects the magnetite surface adsorption process. To explore and analyze the surface adsorption and oxidation behaviors of silicon‐doped Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>, thermogravimetric experiments and density functional theory methods are used to investigate the physicochemical properties of this material during magnetite oxidation. The results of experiments show that with the increase of SiO<jats:sub>2</jats:sub> content, the peaks of the oxidation reaction gradually migrate to the high‐temperature region, the initial oxidation temperature of the mineral increases, and the average oxidation rate decreases. The results of calculations show that when the surface system is doped with Si atoms, the relaxation time of the adsorption and dissociation of oxygen on the surface is prolonged, and the presence of Si isomerization tends to stabilize the crystal lattice structure, reduce the migration of ions, and decrease the mineral's oxidizing properties.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202300768","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The magnetite oxidation process involves magnetite surface adsorption and O2 dissociation, and the presence of impurity elements such as silicon inevitably affects the magnetite surface adsorption process. To explore and analyze the surface adsorption and oxidation behaviors of silicon‐doped Fe3O4, thermogravimetric experiments and density functional theory methods are used to investigate the physicochemical properties of this material during magnetite oxidation. The results of experiments show that with the increase of SiO2 content, the peaks of the oxidation reaction gradually migrate to the high‐temperature region, the initial oxidation temperature of the mineral increases, and the average oxidation rate decreases. The results of calculations show that when the surface system is doped with Si atoms, the relaxation time of the adsorption and dissociation of oxygen on the surface is prolonged, and the presence of Si isomerization tends to stabilize the crystal lattice structure, reduce the migration of ions, and decrease the mineral's oxidizing properties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.