Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He
{"title":"The Hydration Activity Enhancement Method of Mayenite in Ladle Slag: A Review","authors":"Yiming Duan, Shuai Chao, Xi Zhang, Junguo Li, Yaling Zhang, Chunhui Gu, Jiale He","doi":"10.1002/srin.202400355","DOIUrl":null,"url":null,"abstract":"As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca<jats:sub>12</jats:sub>Al<jats:sub>14</jats:sub>O<jats:sub>33</jats:sub>, abbreviated as C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>, amorphous, C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> exhibits excellent hydration activity. Building upon this, methods for amorphizing C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub> are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C<jats:sub>12</jats:sub>A<jats:sub>7</jats:sub>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400355","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a byproduct of the steelmaking process, ladle slag has the potential to be used as an auxiliary cement material in the construction field. However, ladle slag generated after secondary refining is typically handled by air cooling and stacking, leading to the presence of the typical mineral phase mayenite (Ca12Al14O33, abbreviated as C12A7) in a crystalline form within the slag. This reduces its early hydration activity, which adversely affects the compressive strength of concrete and consequently lowers the resource utilization rate of ladle slag. Based on this, this article provides a comprehensive review of the generation process and composition of ladle slag. By discussing the hydration process and hydration products of the typical mineral phase C12A7 in ladle slag, as well as the mutual transformation of hydration products, it is shown that hydration products undergo transformation with increasing temperature. Compared to crystalline C12A7, amorphous, C12A7 exhibits excellent hydration activity. Building upon this, methods for amorphizing C12A7 are elucidated, wherein thermal activation or chemical activation is employed to alter the ordered arrangement of atoms within the crystal structure, thereby reducing the stability of the crystal structure to achieve amorphization of C12A7.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.