{"title":"Density, Surface Tension, and Viscosity of Liquid Low‐Sulfur Manganese–Boron Steel via Maximum Bubble Pressure and Oscillating Crucible Methods","authors":"Matheus Roberto Bellé, Lukas Neubert, Anastasiia Sherstneva, Taisei Yamamoto, Tsuyoshi Nishi, Hidemasa Yamano, Matthias Weinberg, Olena Volkova","doi":"10.1002/srin.202400252","DOIUrl":null,"url":null,"abstract":"In this study, the thermophysical properties of low‐sulfur manganese–boron steel with varying boron and sulfur contents at different temperatures are investigated. Density and surface tension are measured between 1550 and 1650 °C using the maximum bubble pressure method, while viscosity is examined between 1530 and 1570 °C using an improved oscillating crucible viscometer. The methods yield results with low error, consistent with existing literature. The density of the base steel decreases from 7057 ± 25 kg m<jats:sup>−3</jats:sup> at 1550 °C to 6843 ± 85 kg m<jats:sup>−3</jats:sup> at 1650 °C. The addition of boron (up to 57 ppm) and sulfur (up to 130 ppm) does not significantly change the density. Sulfur, increasing from 39 to 130 ppm, reduces the surface tension from 1416 ± 12 to 1302 ± 9 mN m<jats:sup>−1</jats:sup> at 1650 °C. Boron's effect on surface tension varies, possibly influenced by other elements like oxygen. Viscosity ranges from 5.74 to 6.44 mPa s, with boron and sulfur additions causing minimal changes, the largest deviation being 8%. In these results, valuable data for the simulation, modeling, control, and optimization of liquid steel processing are provided.","PeriodicalId":21929,"journal":{"name":"steel research international","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400252","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the thermophysical properties of low‐sulfur manganese–boron steel with varying boron and sulfur contents at different temperatures are investigated. Density and surface tension are measured between 1550 and 1650 °C using the maximum bubble pressure method, while viscosity is examined between 1530 and 1570 °C using an improved oscillating crucible viscometer. The methods yield results with low error, consistent with existing literature. The density of the base steel decreases from 7057 ± 25 kg m−3 at 1550 °C to 6843 ± 85 kg m−3 at 1650 °C. The addition of boron (up to 57 ppm) and sulfur (up to 130 ppm) does not significantly change the density. Sulfur, increasing from 39 to 130 ppm, reduces the surface tension from 1416 ± 12 to 1302 ± 9 mN m−1 at 1650 °C. Boron's effect on surface tension varies, possibly influenced by other elements like oxygen. Viscosity ranges from 5.74 to 6.44 mPa s, with boron and sulfur additions causing minimal changes, the largest deviation being 8%. In these results, valuable data for the simulation, modeling, control, and optimization of liquid steel processing are provided.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming