Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi
{"title":"The Use of Secondary Metallurgy Slag as Soil Corrective in Agriculture: Approval of Their Application in Italy","authors":"Davide Mombelli, Gianluca Dall’Osto, Sara Scolari, Carlo Mapelli, Roberto Moreschi, Roberto Marras, Riccardo Morandi","doi":"10.1002/srin.202400310","DOIUrl":null,"url":null,"abstract":"Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg<jats:sup>−1</jats:sup>/mg kg<jats:sup>−1</jats:sup>) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/srin.202400310","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Among the steelmaking slag, secondary metallurgy slag (SMS) is the most problematic to be recycled. Several attempts to recover such slag as lime replacement, slag flux, pozzolanic materials have been made for long time with pros and cons. However, the amount of recyclable slag is limited and often their employment requires higher energy demand than traditional materials. Nevertheless, the use of SMS in agriculture is poorly or never considered. In this article, the legal and technical evaluation of SMS as raw material for fertilizers production is investigated. Compliance of technical specification, toxic metals concentration, and leaching behavior allows to confirm the technical feasibility of SMS use as a raw material for fertilizers manufacture. Both from the literature data and the experimental results on 16 industrial SMS samples, the requirements for calcium‐magnesium‐sulfur‐based fertilizers, soil correctives and for sanitizing agricultural sewage sludge, appear fully satisfied. The CaO concentration in SMS (35–60 wt%) is abundantly higher than the requirements (≥15 wt%) and CaO is present in most part as water‐soluble complexes such as calcium aluminates (70 wt%), silicates (10 wt%), and sulfide (4 wt%). The pH of the SMS samples leachate is comparable to that of fresh lime (12.35 vs 12.46), highlighting a better behavior for sewage sludge sanitation with respect to limestone (9.98). The measured toxic metals and leachate elements concentration over the corresponding admittable threshold are always lower than 0.5 and 1.0 (mg kg−1/mg kg−1) for liming materials. Finally, these results lead to officially approve the use of SMS as soil corrective according to the Italian Fertilizer Regulation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.