{"title":"Testing the causal relationship of fat and sugar intake with depression and cortisol: a Mendelian Randomisation study","authors":"Matylda Buczkowska, Eleonora Iob","doi":"10.1038/s41398-024-03089-2","DOIUrl":null,"url":null,"abstract":"<p>Unhealthy diets high in fat and sugar content may have an impact on psychological health and increase the risk of Major Depressive Disorder (MDD) and stress levels. On the other hand, MDD and stress might be related to food choices and intake. However, it is not clear whether diet, and specifically fat and sugar intake, is causally related to stress and MDD, and whether this relationship may be bi-directional. This study utilised Mendelian Randomisation (MR) to investigate the causal nature of the relationship of fat and sugar intake with MDD and cortisol (as a proxy of stress), and to shed light on the direction of this relationship. Summary-level data for all exposure and outcome variables were obtained from large-scale, non-overlapping GWASs in individuals of European ancestry. Bidirectional analyses were performed: one with macronutrients as exposures and one with MDD/cortisol as exposures. Random-effects inverse-variance weighted regression was used as the primary analytic method for genetic instruments with at least two single nucleotide polymorphisms (SNPs) available (and individual Wald ratio was used when only one SNP was available). Higher levels of genetically predicted relative sugar intake were causally associated with lower MDD risk, for both genome-wide significant p-value threshold of <i>p</i> < 1 × 10<sup>−8</sup>, (OR = 0.553, 95% CI: 0.395-0.775) and relaxed p-value threshold of <i>p</i> < 1 × 10<sup>−6</sup> (OR = 0.786, 95% CI: 0.630–0.981). No reverse causality was detected in the opposite direction as MDD was not associated with sugar consumption. The associations observed for all the other pairs of variables were weak and imprecise. A number of limitations was present in the study, such as low-SNP based heritability for some exposures, inability to prove whether variants were correlated with unmeasured confounders and self-reporting of MDD data. Lifestyle and/or pharmacological interventions targeting sugar-related physiological mechanisms may help to reduce depressive symptoms. However, more research is necessary on short- and long-term effects of sugar on the risk of MDD. Additionally, future studies should investigate whether the amount and type of sugar consumed may underlie the impact of sugar on mood and stress levels.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03089-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Unhealthy diets high in fat and sugar content may have an impact on psychological health and increase the risk of Major Depressive Disorder (MDD) and stress levels. On the other hand, MDD and stress might be related to food choices and intake. However, it is not clear whether diet, and specifically fat and sugar intake, is causally related to stress and MDD, and whether this relationship may be bi-directional. This study utilised Mendelian Randomisation (MR) to investigate the causal nature of the relationship of fat and sugar intake with MDD and cortisol (as a proxy of stress), and to shed light on the direction of this relationship. Summary-level data for all exposure and outcome variables were obtained from large-scale, non-overlapping GWASs in individuals of European ancestry. Bidirectional analyses were performed: one with macronutrients as exposures and one with MDD/cortisol as exposures. Random-effects inverse-variance weighted regression was used as the primary analytic method for genetic instruments with at least two single nucleotide polymorphisms (SNPs) available (and individual Wald ratio was used when only one SNP was available). Higher levels of genetically predicted relative sugar intake were causally associated with lower MDD risk, for both genome-wide significant p-value threshold of p < 1 × 10−8, (OR = 0.553, 95% CI: 0.395-0.775) and relaxed p-value threshold of p < 1 × 10−6 (OR = 0.786, 95% CI: 0.630–0.981). No reverse causality was detected in the opposite direction as MDD was not associated with sugar consumption. The associations observed for all the other pairs of variables were weak and imprecise. A number of limitations was present in the study, such as low-SNP based heritability for some exposures, inability to prove whether variants were correlated with unmeasured confounders and self-reporting of MDD data. Lifestyle and/or pharmacological interventions targeting sugar-related physiological mechanisms may help to reduce depressive symptoms. However, more research is necessary on short- and long-term effects of sugar on the risk of MDD. Additionally, future studies should investigate whether the amount and type of sugar consumed may underlie the impact of sugar on mood and stress levels.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.