{"title":"Quantum-Inspired Reinforcement Learning for Quantum Control","authors":"Haixu Yu;Xudong Zhao;Chunlin Chen","doi":"10.1109/TCST.2024.3437142","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is considered a powerful technology with the potential to revolutionize quantum control. However, the application effectiveness of traditional RL is often limited by some insurmountable experimental conditions. Thus, developing new RL algorithms that can efficiently manipulate the quantum system dynamics is a crucial task. Prior research has shown that incorporating quantum mechanical properties into RL can improve learning performance. In this article, we consider the quantum control problem where only the target state can be accurately identified and introduce a quantum-inspired RL (QiRL) method. In particular, we propose a quantum-inspired exploration strategy to replace a commonly used \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n-greedy strategy, as well as a quantum-inspired reward scheme to incentivize the learning agent. Numerical results on three quantum system control problems, i.e., one-qubit closed quantum system, two-level open quantum system, and many-qubit closed quantum system, verify the effectiveness of QiRL. Comparison results show that the proposed QiRL outperforms existing RL algorithms (deep Q-network and proximal policy optimization) in terms of stability and efficiency for solving quantum control problems.","PeriodicalId":13103,"journal":{"name":"IEEE Transactions on Control Systems Technology","volume":"33 1","pages":"61-76"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Control Systems Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636290/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning (RL) is considered a powerful technology with the potential to revolutionize quantum control. However, the application effectiveness of traditional RL is often limited by some insurmountable experimental conditions. Thus, developing new RL algorithms that can efficiently manipulate the quantum system dynamics is a crucial task. Prior research has shown that incorporating quantum mechanical properties into RL can improve learning performance. In this article, we consider the quantum control problem where only the target state can be accurately identified and introduce a quantum-inspired RL (QiRL) method. In particular, we propose a quantum-inspired exploration strategy to replace a commonly used
$\epsilon $
-greedy strategy, as well as a quantum-inspired reward scheme to incentivize the learning agent. Numerical results on three quantum system control problems, i.e., one-qubit closed quantum system, two-level open quantum system, and many-qubit closed quantum system, verify the effectiveness of QiRL. Comparison results show that the proposed QiRL outperforms existing RL algorithms (deep Q-network and proximal policy optimization) in terms of stability and efficiency for solving quantum control problems.
期刊介绍:
The IEEE Transactions on Control Systems Technology publishes high quality technical papers on technological advances in control engineering. The word technology is from the Greek technologia. The modern meaning is a scientific method to achieve a practical purpose. Control Systems Technology includes all aspects of control engineering needed to implement practical control systems, from analysis and design, through simulation and hardware. A primary purpose of the IEEE Transactions on Control Systems Technology is to have an archival publication which will bridge the gap between theory and practice. Papers are published in the IEEE Transactions on Control System Technology which disclose significant new knowledge, exploratory developments, or practical applications in all aspects of technology needed to implement control systems, from analysis and design through simulation, and hardware.