Synthesis and Evaluation of Antibacterial and Antifungal Activities In vitro and In silico of Novel Morpholinoalkoxychalcones

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Hoang Minh Phan, Tan Thanh Mai, Thinh Nguyen Quang Don, Dat Thanh Do, Khac Minh Thai, Thanh Dao Tran, Phuong Truong, Phuong Nguyen Hoai Huynh
{"title":"Synthesis and Evaluation of Antibacterial and Antifungal Activities In vitro and In silico of Novel Morpholinoalkoxychalcones","authors":"Hoang Minh Phan, Tan Thanh Mai, Thinh Nguyen Quang Don, Dat Thanh Do, Khac Minh Thai, Thanh Dao Tran, Phuong Truong, Phuong Nguyen Hoai Huynh","doi":"10.2174/0115734064316022240801093905","DOIUrl":null,"url":null,"abstract":"Introduction: Chalcone compounds exhibit diverse bioactivities, attracting significant interest. Morpholine is a heterocycle commonly used in medicinal chemistry. It could enhance the potency, pharmacokinetics, and bioactivities of its compounds. Method: Adding morpholine into the chalcone scaffold could help create new compounds with favorable bioactivities. In this study, a new parallel synthesis procedure has been developed. Using this procedure, 18 novel morpholinoalkoxychalcones have been successfully synthesized. They had chains with morpholine appended on ring A or ring B. All the synthesized compounds were evaluated for the antibacterial and antifungal activities by agar diffusion method on 5 bacteria and 2 fungi strains. Results: The compounds with good inhibition were determined with respect to the MIC values by the agar dilution method. Among the tested compounds, B.21 was found to be the best against S. faecalis, with an MIC value of 0.6 mM. B.43 was found to be the best against A. niger and C. albicans with MIC value of 2.04 mM. Conclusion: The in silico study has revealed two targets to align with the in vitro results. Longer alkyl chains have enhanced the activity, along with the presence of OH, NH2, and halogen groups on both rings A and B. result: We synthesis 18 new morpholinoalkoxychalcones with the chain both on ring A and ring B. All compounds are new based on Scifinder at 10/2023. 3 compounds showed intermediate activity on 5 bacteria strains and 8 compounds showed intermediate activity on 2 fungi strains. The in silico study showed that there were 2 targets suitable with the in vitro results.","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064316022240801093905","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Chalcone compounds exhibit diverse bioactivities, attracting significant interest. Morpholine is a heterocycle commonly used in medicinal chemistry. It could enhance the potency, pharmacokinetics, and bioactivities of its compounds. Method: Adding morpholine into the chalcone scaffold could help create new compounds with favorable bioactivities. In this study, a new parallel synthesis procedure has been developed. Using this procedure, 18 novel morpholinoalkoxychalcones have been successfully synthesized. They had chains with morpholine appended on ring A or ring B. All the synthesized compounds were evaluated for the antibacterial and antifungal activities by agar diffusion method on 5 bacteria and 2 fungi strains. Results: The compounds with good inhibition were determined with respect to the MIC values by the agar dilution method. Among the tested compounds, B.21 was found to be the best against S. faecalis, with an MIC value of 0.6 mM. B.43 was found to be the best against A. niger and C. albicans with MIC value of 2.04 mM. Conclusion: The in silico study has revealed two targets to align with the in vitro results. Longer alkyl chains have enhanced the activity, along with the presence of OH, NH2, and halogen groups on both rings A and B. result: We synthesis 18 new morpholinoalkoxychalcones with the chain both on ring A and ring B. All compounds are new based on Scifinder at 10/2023. 3 compounds showed intermediate activity on 5 bacteria strains and 8 compounds showed intermediate activity on 2 fungi strains. The in silico study showed that there were 2 targets suitable with the in vitro results.
新型吗啉烷氧基查耳酮的合成及其体外和硅学抗菌和抗真菌活性评价
简介:查耳酮化合物具有多种生物活性,引起了人们的极大兴趣。吗啉是药物化学中常用的杂环。它可以增强其化合物的药效、药代动力学和生物活性。研究方法在查尔酮支架中加入吗啉有助于创造具有良好生物活性的新化合物。本研究开发了一种新的平行合成程序。利用这一程序,成功合成了 18 种新型吗啉烷氧基查尔酮。通过琼脂扩散法对 5 种细菌和 2 种真菌菌株进行了抗菌和抗真菌活性评估。结果:通过琼脂稀释法测定了具有良好抑菌作用的化合物的 MIC 值。在测试的化合物中,B.21 对粪肠球菌的抑制效果最好,MIC 值为 0.6 mM。B.43 对 A. niger 和 C. albicans 的作用最好,MIC 值为 2.04 mM。结论:硅学研究发现了两个与体外研究结果一致的靶点。较长的烷基链增强了活性,同时 A 环和 B 环上都存在 OH、NH2 和卤素基团:我们合成了 18 种新的吗啉基烷氧基查耳酮,其 A 环和 B 环上都有链。3 个化合物对 5 种细菌菌株显示出中等活性,8 个化合物对 2 种真菌菌株显示出中等活性。硅学研究表明,有 2 个目标与体外结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信