Anisotropically enhanced thermal conductivity of polymer composites based on segregated nanocarbon networks

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gyun Young Yoo, Ki Hoon Kim, Yong Chae Jung, Hunsu Lee, Seong Yun Kim
{"title":"Anisotropically enhanced thermal conductivity of polymer composites based on segregated nanocarbon networks","authors":"Gyun Young Yoo, Ki Hoon Kim, Yong Chae Jung, Hunsu Lee, Seong Yun Kim","doi":"10.1007/s42823-024-00799-x","DOIUrl":null,"url":null,"abstract":"<p>Segregated composites, where fillers are selectively placed at the matrix interface to form a segregated filler network, are attracting attention because they can provide excellent conductive properties at low filler content. In this study, the anisotropic enhancement in thermal conductivity of composites was discovered due to the unique structure of the segregated network. The segregated composites were produced using a typical mechanical mixing of matrix pellets and the internal structure was precisely analyzed using three-dimensional non-destructive analysis. The segregated composites slightly improved in the through-plane thermal conductivity, but the in-plane thermal conductivity increased rapidly, showing the anisotropic thermal conductivity. The maximum improvement in the in-plane thermal conductivity of the segregated composites increased by 112.5 (at 7 wt% graphene nanoplatelet) and 71.4% (at 10 wt% multi-walled carbon nanotube), respectively, compared to that of the random composites filled with the same amount of filler. On the other hand, the electrical conductivity of the segregated composites was isotropic due to the difference in the transport mechanisms of electrons and phonons. The anisotropic thermal conductivity developed by the segregated network was helpful in inducing effective heat dissipation of commercial smartphone logic boards.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"26 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00799-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Segregated composites, where fillers are selectively placed at the matrix interface to form a segregated filler network, are attracting attention because they can provide excellent conductive properties at low filler content. In this study, the anisotropic enhancement in thermal conductivity of composites was discovered due to the unique structure of the segregated network. The segregated composites were produced using a typical mechanical mixing of matrix pellets and the internal structure was precisely analyzed using three-dimensional non-destructive analysis. The segregated composites slightly improved in the through-plane thermal conductivity, but the in-plane thermal conductivity increased rapidly, showing the anisotropic thermal conductivity. The maximum improvement in the in-plane thermal conductivity of the segregated composites increased by 112.5 (at 7 wt% graphene nanoplatelet) and 71.4% (at 10 wt% multi-walled carbon nanotube), respectively, compared to that of the random composites filled with the same amount of filler. On the other hand, the electrical conductivity of the segregated composites was isotropic due to the difference in the transport mechanisms of electrons and phonons. The anisotropic thermal conductivity developed by the segregated network was helpful in inducing effective heat dissipation of commercial smartphone logic boards.

Abstract Image

基于离析纳米碳网络的聚合物复合材料的各向异性增强热导率
偏析复合材料是指将填料选择性地置于基体界面以形成偏析填料网络的复合材料,这种复合材料以较低的填料含量就能提供优异的导电性能,因此备受关注。本研究发现,由于离析网络的独特结构,复合材料的导热性能得到了各向异性的增强。离析复合材料是采用典型的基体颗粒机械混合方法生产的,并利用三维无损分析对其内部结构进行了精确分析。离析复合材料的通面热导率略有提高,但面内热导率迅速增加,显示出各向异性的热导率。与填充等量填料的无规复合材料相比,离析复合材料面内导热率的最大提高幅度分别为 112.5%(7 wt% 的石墨烯纳米片)和 71.4%(10 wt% 的多壁碳纳米管)。另一方面,由于电子和声子的传输机制不同,离析复合材料的导电性是各向同性的。分隔网络产生的各向异性热导率有助于提高商用智能手机逻辑板的散热效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信