Shuang Zhao, Yiyang Wan, Lu Han, Bochao Tian, Zhongyu Duan, Ruidan Su, Xibao Li
{"title":"Advances in ferroelectric and piezoelectric photocatalysts with oxygen vacancy","authors":"Shuang Zhao, Yiyang Wan, Lu Han, Bochao Tian, Zhongyu Duan, Ruidan Su, Xibao Li","doi":"10.1007/s42823-024-00794-2","DOIUrl":null,"url":null,"abstract":"<p>Photocatalysis technology including hydrogen evolution from water splitting, CO<sub>2</sub> reduction and N<sub>2</sub> conversion to ammonia emerges as a significant approach for energy crisis and environmental pollution. For these conventional semiconductors such as TiO<sub>2</sub>, ZnO, WO<sub>3</sub>, CdS and g-C<sub>3</sub>N<sub>4</sub>, however, inefficient photoabsorption, rapid recombination of photogenerated carriers, and inadequate surface reactive sites hamper the photoinduced activity and stability. Defect engineering, especially oxygen vacancy, has recently drawn the attention of a number of investigators primarily in connection with its feasibility of regulatability, identifiability and effectiveness. A series of ferroelectric and piezoelectric semiconductors, with internal electric field generated by the polarization, are considered an excellent candidate for replacement of conventional semiconductors, because the observed charge separation ability of those is far from theoretical expectation. With the boost of oxygen vacancy, polarization behavior can be effectively regulated to further improve photocatalytic performance. Related studies based on the above background are the current hotspot of photocatalysis; this paper reviews the latest research progress of ferroelectric and piezoelectric photocatalysts with oxygen vacancy. Starting from the generation of oxygen vacancies, five preparation strategy including ion doping, thermal treatment, chemical reduction, ultraviolet irradiation, and plasma etching are introduced; advanced characterization are summarized in classification of spectroscopy, energy spectrum, electron microscopy, density function theory and in situ techniques. Secondly, the mechanism of oxygen vacancy regulated polarization and their synergistic photocatalytic reactions are reviewed and summarized. Finally, an overview on the prospect of advanced photocatalytic engineering concerned to oxygen vacancies involved ferroelectric and piezoelectric photocatalysts is proposed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"27 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00794-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis technology including hydrogen evolution from water splitting, CO2 reduction and N2 conversion to ammonia emerges as a significant approach for energy crisis and environmental pollution. For these conventional semiconductors such as TiO2, ZnO, WO3, CdS and g-C3N4, however, inefficient photoabsorption, rapid recombination of photogenerated carriers, and inadequate surface reactive sites hamper the photoinduced activity and stability. Defect engineering, especially oxygen vacancy, has recently drawn the attention of a number of investigators primarily in connection with its feasibility of regulatability, identifiability and effectiveness. A series of ferroelectric and piezoelectric semiconductors, with internal electric field generated by the polarization, are considered an excellent candidate for replacement of conventional semiconductors, because the observed charge separation ability of those is far from theoretical expectation. With the boost of oxygen vacancy, polarization behavior can be effectively regulated to further improve photocatalytic performance. Related studies based on the above background are the current hotspot of photocatalysis; this paper reviews the latest research progress of ferroelectric and piezoelectric photocatalysts with oxygen vacancy. Starting from the generation of oxygen vacancies, five preparation strategy including ion doping, thermal treatment, chemical reduction, ultraviolet irradiation, and plasma etching are introduced; advanced characterization are summarized in classification of spectroscopy, energy spectrum, electron microscopy, density function theory and in situ techniques. Secondly, the mechanism of oxygen vacancy regulated polarization and their synergistic photocatalytic reactions are reviewed and summarized. Finally, an overview on the prospect of advanced photocatalytic engineering concerned to oxygen vacancies involved ferroelectric and piezoelectric photocatalysts is proposed.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.