The potential of carbon dots produced from mangosteen through green synthesis for induced-cell proliferation and fluorescence bioimaging

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tanachporn Lukprang, Pakorn Preechaburana, Monthon Lertworapreecha, Supaluck Amloy
{"title":"The potential of carbon dots produced from mangosteen through green synthesis for induced-cell proliferation and fluorescence bioimaging","authors":"Tanachporn Lukprang, Pakorn Preechaburana, Monthon Lertworapreecha, Supaluck Amloy","doi":"10.1007/s42823-024-00791-5","DOIUrl":null,"url":null,"abstract":"<p>We report the simple one-step hydrothermal green synthesis of carbon dots (CDs) without any chemical reagents using mangosteen pulp (CDs1), peel (CDs2), and leaf (CDs3) extract as a green carbon source. In the aqueous medium, these CDs had a size of 8–15 nm with an energy gap of about 4 eV. The CDs emitted a bright green color under ultraviolet (UV) irritation with an average fluorescence quantum yield of the CDs of 1.6%. Moreover, the CDs contained various functional groups, such as C = C, C–C, C–O–C, C–O, C = O, C–H, and O–H, which were beneficial for enhancing their fluorescence property. Furthermore, the CDs were applied in the stain fluorescent imaging of myosatellite chicken stem cells and Vero cells. The CDs2 and CDs3 induced a strong fluorescence emission intensity of the strain cells, whereas CDs1 acted as the highest potential enhancer in cell proliferation as confirmed by its cellular viability which was the around four times that of the control. Therefore, the CDs were highly biocompatible and acted as enhancers in cell proliferation in myosatellite chicken stem cells and Vero cells. Thus, simple, cost-effective, scalable, and green synthetic approach-based CDs show promise for the development of selective organelle labeling and optical sensing probes.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"13 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00791-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the simple one-step hydrothermal green synthesis of carbon dots (CDs) without any chemical reagents using mangosteen pulp (CDs1), peel (CDs2), and leaf (CDs3) extract as a green carbon source. In the aqueous medium, these CDs had a size of 8–15 nm with an energy gap of about 4 eV. The CDs emitted a bright green color under ultraviolet (UV) irritation with an average fluorescence quantum yield of the CDs of 1.6%. Moreover, the CDs contained various functional groups, such as C = C, C–C, C–O–C, C–O, C = O, C–H, and O–H, which were beneficial for enhancing their fluorescence property. Furthermore, the CDs were applied in the stain fluorescent imaging of myosatellite chicken stem cells and Vero cells. The CDs2 and CDs3 induced a strong fluorescence emission intensity of the strain cells, whereas CDs1 acted as the highest potential enhancer in cell proliferation as confirmed by its cellular viability which was the around four times that of the control. Therefore, the CDs were highly biocompatible and acted as enhancers in cell proliferation in myosatellite chicken stem cells and Vero cells. Thus, simple, cost-effective, scalable, and green synthetic approach-based CDs show promise for the development of selective organelle labeling and optical sensing probes.

Graphical abstract

Abstract Image

通过绿色合成从山竹中提取的碳点在诱导细胞增殖和荧光生物成像方面的潜力
我们报告了利用山竹果肉(CDs1)、果皮(CDs2)和树叶(CDs3)提取物作为绿色碳源,在不使用任何化学试剂的情况下,简单地一步水热法绿色合成碳点(CDs)的过程。在水介质中,这些 CD 的尺寸为 8-15 纳米,能隙约为 4 eV。在紫外线(UV)的刺激下,CD 发出明亮的绿色,平均荧光量子产率为 1.6%。此外,这些光盘含有各种官能团,如 C = C、C-C、C-O-C、C-O、C = O、C-H 和 O-H,这些官能团有利于增强其荧光特性。此外,CDs 还被应用于肌卫星鸡干细胞和 Vero 细胞的染色荧光成像。CDs2 和 CDs3 可诱导变应原细胞产生强烈的荧光发射强度,而 CDs1 则是细胞增殖潜力最大的增强剂,其细胞活力约为对照组的四倍。因此,CDs 具有很高的生物相容性,并能促进肌卫星鸡干细胞和 Vero 细胞的增殖。因此,基于简单、经济、可扩展和绿色合成方法的光盘有望用于开发选择性细胞器标记和光学传感探针。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信