Ting He, Siying Xin, Louwei Cui, Sijie Wang, Shiquan He, Xian Xu, Tao Liu, Yonghong Zhu, Jiaojiao Liu, Dong Li
{"title":"Effect of changes in the structure and composition of medium–low-temperature coal tar pitch on the quality of needle coke","authors":"Ting He, Siying Xin, Louwei Cui, Sijie Wang, Shiquan He, Xian Xu, Tao Liu, Yonghong Zhu, Jiaojiao Liu, Dong Li","doi":"10.1007/s42823-024-00795-1","DOIUrl":null,"url":null,"abstract":"<p>The structure and composition of coal tar pitch are critical in the production of superior needle coke. We used high-temperature refined coal tar pitch (HRCTP) to modify medium–low-temperature refined coal tar pitch (MLRCTP) for needle coke preparation. Various characterization techniques were applied to evaluate the effects of the HRCTP addition on the MLRCTP's structure and composition, and to investigate the microstructural and crystallographic differences in needle coke from different feedstocks. We identified the optimal HRCTP addition level and assessed how carbonization reaction conditions influenced needle coke quality. The findings indicated that HRCTP addition increased the aromatic hydrocarbons content while reducing the heterocyclic compounds and excess alkanes, leading to enhanced structure and composition, which supported the structured development of carbon-based structures during the thermal polycondensation process. Notably, higher HRCTP amounts did not equate to better outcomes. With a 25% HRCTP additive level, the needle coke’s microstructure showed a highly ordered fibrous texture with optimal orientation, the greatest degree of graphitization, and a mature graphite crystal content of 24.84%. Further optimization of the carbonization process demonstrated that very high temperatures might cause the formation of numerous mosaic structures due to disordered radical cross-linking. Properly reducing pressure at high temperatures could promote adequate directional airflow and apply shear force during orderly stacking of the mesophase, thus enhancing the carbon lamellae’s streamline and orientation. Following the carbonization process optimization, the mature graphite crystal content in the needle coke increased from 24.84% to 39.87%.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>For table of contents only</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"28 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00795-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structure and composition of coal tar pitch are critical in the production of superior needle coke. We used high-temperature refined coal tar pitch (HRCTP) to modify medium–low-temperature refined coal tar pitch (MLRCTP) for needle coke preparation. Various characterization techniques were applied to evaluate the effects of the HRCTP addition on the MLRCTP's structure and composition, and to investigate the microstructural and crystallographic differences in needle coke from different feedstocks. We identified the optimal HRCTP addition level and assessed how carbonization reaction conditions influenced needle coke quality. The findings indicated that HRCTP addition increased the aromatic hydrocarbons content while reducing the heterocyclic compounds and excess alkanes, leading to enhanced structure and composition, which supported the structured development of carbon-based structures during the thermal polycondensation process. Notably, higher HRCTP amounts did not equate to better outcomes. With a 25% HRCTP additive level, the needle coke’s microstructure showed a highly ordered fibrous texture with optimal orientation, the greatest degree of graphitization, and a mature graphite crystal content of 24.84%. Further optimization of the carbonization process demonstrated that very high temperatures might cause the formation of numerous mosaic structures due to disordered radical cross-linking. Properly reducing pressure at high temperatures could promote adequate directional airflow and apply shear force during orderly stacking of the mesophase, thus enhancing the carbon lamellae’s streamline and orientation. Following the carbonization process optimization, the mature graphite crystal content in the needle coke increased from 24.84% to 39.87%.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.