Self-assembled peptide hydrogel loaded with functional peptide Dentonin accelerates vascularized bone tissue regeneration in critical-size bone defects.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Yijuan Liu,Li Li,Mengjiao He,Yanmei Xu,Zekai Wu,Xiongcheng Xu,Kai Luo,Hongbing Lv
{"title":"Self-assembled peptide hydrogel loaded with functional peptide Dentonin accelerates vascularized bone tissue regeneration in critical-size bone defects.","authors":"Yijuan Liu,Li Li,Mengjiao He,Yanmei Xu,Zekai Wu,Xiongcheng Xu,Kai Luo,Hongbing Lv","doi":"10.1093/rb/rbae106","DOIUrl":null,"url":null,"abstract":"Regeneration of oral craniofacial bone defects is a complex process, and reconstruction of large bone defects without the use of exogenous cells or bioactive substances remains a major challenge. Hydrogels are highly hydrophilic polymer networks with the potential to promote bone tissue regeneration. In this study, functional peptide Dentonin was loaded onto self-assembled peptide hydrogels (RAD) to constitute functionally self-assembling peptide RAD/Dentonin hydrogel scaffolds with a view that RAD/Dentonin hydrogel could facilitate vascularized bone regeneration in critical-size calvarial defects. The functionalized peptide RAD/Dentonin forms highly ordered β-sheet supramolecular structures via non-covalent interactions like hydrogen bonding, ultimately assembling into nano-fiber network. RAD/Dentonin hydrogels exhibited desirable porosity and swelling properties, and appropriate biodegradability. RAD/Dentonin hydrogel supported the adhesion, proliferation and three-dimensional migration of bone marrow mesenchymal stem cells (BMSCs) and has the potential to induce differentiation of BMSCs towards osteogenesis through activation of the Wnt/β-catenin pathway. Moreover, RAD/Dentonin hydrogel modulated paracrine secretion of BMSCs and increased the migration, tube formation and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), which boosted the angiogenic capacity of HUVECs. In vivo, RAD/Dentonin hydrogel significantly strengthened vascularized bone formation in rat calvarial defect. Taken together, these results indicated that the functionalized self-assembling peptide RAD/Dentonin hydrogel effectively enhance osteogenic differentiation of BMSCs, indirectly induce angiogenic effects in HUVECs, and facilitate vascularized bone regeneration in vivo. Thus, it is a promising bioactive material for oral and maxillofacial regeneration.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae106","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Regeneration of oral craniofacial bone defects is a complex process, and reconstruction of large bone defects without the use of exogenous cells or bioactive substances remains a major challenge. Hydrogels are highly hydrophilic polymer networks with the potential to promote bone tissue regeneration. In this study, functional peptide Dentonin was loaded onto self-assembled peptide hydrogels (RAD) to constitute functionally self-assembling peptide RAD/Dentonin hydrogel scaffolds with a view that RAD/Dentonin hydrogel could facilitate vascularized bone regeneration in critical-size calvarial defects. The functionalized peptide RAD/Dentonin forms highly ordered β-sheet supramolecular structures via non-covalent interactions like hydrogen bonding, ultimately assembling into nano-fiber network. RAD/Dentonin hydrogels exhibited desirable porosity and swelling properties, and appropriate biodegradability. RAD/Dentonin hydrogel supported the adhesion, proliferation and three-dimensional migration of bone marrow mesenchymal stem cells (BMSCs) and has the potential to induce differentiation of BMSCs towards osteogenesis through activation of the Wnt/β-catenin pathway. Moreover, RAD/Dentonin hydrogel modulated paracrine secretion of BMSCs and increased the migration, tube formation and angiogenic gene expression of human umbilical vein endothelial cells (HUVECs), which boosted the angiogenic capacity of HUVECs. In vivo, RAD/Dentonin hydrogel significantly strengthened vascularized bone formation in rat calvarial defect. Taken together, these results indicated that the functionalized self-assembling peptide RAD/Dentonin hydrogel effectively enhance osteogenic differentiation of BMSCs, indirectly induce angiogenic effects in HUVECs, and facilitate vascularized bone regeneration in vivo. Thus, it is a promising bioactive material for oral and maxillofacial regeneration.
负载功能肽 Dentonin 的自组装肽水凝胶可加速临界大小骨缺损的血管化骨组织再生。
口腔颅面骨缺损的再生是一个复杂的过程,在不使用外源细胞或生物活性物质的情况下重建大面积骨缺损仍然是一项重大挑战。水凝胶是一种高亲水性聚合物网络,具有促进骨组织再生的潜力。本研究将功能肽 Dentonin 加载到自组装肽水凝胶(RAD)上,构成功能自组装肽 RAD/Dentonin 水凝胶支架,以期 RAD/Dentonin 水凝胶能促进临界大小腓肠肌缺损的血管化骨再生。功能化肽 RAD/Dentonin 通过氢键等非共价相互作用形成高度有序的 β 片超分子结构,最终组装成纳米纤维网络。RAD/Dentonin 水凝胶具有理想的孔隙率和溶胀特性以及适当的生物降解性。RAD/Dentonin 水凝胶支持骨髓间充质干细胞(BMSCs)的粘附、增殖和三维迁移,并有可能通过激活 Wnt/β-catenin 通路诱导 BMSCs 向成骨方向分化。此外,RAD/Dentonin水凝胶还能调节BMSCs的旁分泌,增加人脐静脉内皮细胞(HUVECs)的迁移、管形成和血管生成基因表达,从而增强HUVECs的血管生成能力。在体内,RAD/Dentonin 水凝胶能显著增强大鼠腓骨缺损的血管骨形成。综上所述,这些结果表明,功能化自组装肽 RAD/Dentonin 水凝胶能有效增强 BMSCs 的成骨分化,间接诱导 HUVECs 的血管生成效应,促进体内血管化骨再生。因此,它是一种很有前景的口腔颌面部再生生物活性材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信