Nan Wang, Ting-Ting Dong, Shi-Yan Li, Ning Yuan, Lin Yu, Ai-Dong Zhu
{"title":"Enhancement of Nonreciprocal Entanglement and Transmission via Phase-Dependent Unidirectional Coupling","authors":"Nan Wang, Ting-Ting Dong, Shi-Yan Li, Ning Yuan, Lin Yu, Ai-Dong Zhu","doi":"10.1002/qute.202400224","DOIUrl":null,"url":null,"abstract":"<p>The nonreciprocal property of quantum systems is crucial for chiral quantum networks. In this study, a phase-controlled scheme is proposed to enhance the nonreciprocal quantum entanglement and optical transmission in a cavity optomechanical system by introducing a phase-dependent unidirectional coupling between two whispering-gallery-mode (WGM) resonators. The Sagnac effect induced by the spinning resonator generates nonreciprocity, while the interference effect between direct evanescent coupling and indirect phase-dependent unidirectional coupling significantly enhances entanglement under the anti-Stokes sideband. For specific coupling phases, ideal nonreciprocity can be achieved in both entanglement and transmission. The proposed phase-controlled nonreciprocity presented offers an effective strategy for constructing a unidirectional quantum channel and implementing an optical diode in chiral quantum networks, thereby opening up new possibilities for applications in quantum technologies.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The nonreciprocal property of quantum systems is crucial for chiral quantum networks. In this study, a phase-controlled scheme is proposed to enhance the nonreciprocal quantum entanglement and optical transmission in a cavity optomechanical system by introducing a phase-dependent unidirectional coupling between two whispering-gallery-mode (WGM) resonators. The Sagnac effect induced by the spinning resonator generates nonreciprocity, while the interference effect between direct evanescent coupling and indirect phase-dependent unidirectional coupling significantly enhances entanglement under the anti-Stokes sideband. For specific coupling phases, ideal nonreciprocity can be achieved in both entanglement and transmission. The proposed phase-controlled nonreciprocity presented offers an effective strategy for constructing a unidirectional quantum channel and implementing an optical diode in chiral quantum networks, thereby opening up new possibilities for applications in quantum technologies.